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Foreword

As we approach the 21 st century, NASA has embarked upon an ambitious plan known as

the Space Science Enterprise whose goals are aimed at answering a number of fundamental

questions. These include the study of the origin of the Universe, the evolution of galaxies, stars,

and solar systems, and the destiny of the Earth in the cosmos. An unprecedented opportunity in

space exploration is now presenting itself. It is a time when breathtaking discoveries are being

made in space about our own solar system and Universe while similar advances are coming forth

in all the sciences and technologies back on Earth.

To this end, the construction and completion of the International Space Station (ISS)

represents an important next step, and an opportunity to pursue missions of scientific exploration

at the threshold of space, unhampered by the Earth's atmosphere. It is there, in low Earth orbit,

that measurements of greater precision and longer duration are feasible which may bring together

the disciplines of particle physics, astrophysics, and cosmology in much the same way that the

orbiting Hubble Space Telescope has opened new vistas in astronomy.

One such experiment entitled the Advanced Cosmic-Ray Composition Experiment for

Space Station (ACCESS) is proposed to measure the very high-energy nuclei in space (or

"cosmic rays") and their relative abundances, comprising all of the elements in the periodic table.

This large-area instrument will be designed for a four-year exposure in orbit, with the goal of

determining the origin and acceleration mechanism for these particles at energies far above

anything producible by Earth-based accelerators. This report summarizes our preliminary study

of the accommodations such as power, weight, and other infrastructure provided for ACCESS by

the ISS and the related Space Shuttle interfaces during launch, deployment, and return.

We are pleased to conclude that ACCESS in its current, preliminary baseline design can

readily be accommodated by the ISS and Shuttle for a wide range of instrument configurations of

varying size and weight--all of which are defined in the report which follows.
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Summary

In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha

Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration

with the U.S. Department of Energy. The AMS program was chartered to place a magnetic

spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this

decision was that NASA would begin to explore cost-effective ways through which the design

and implementation of AMS might benefit other promising payload experiments evolving from

the Office of Space Science.

The first such experiment to come forward was Advanced Cosmic-Ray Composition

Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in

space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the

AMS on the International Space Station (ISS), and replace the latter as its successor when the

AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program,

with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon

programs have always been a cost-effective NASA resource since the particle physics

instrumentation for balloon and space applications are directly related.

The next step was to expand the process, pooling together expertise from various NASA

centers and universities while opening up definition of the ACCESS science goals to the

international community through the standard practice of peer review. This process is still

ongoing, and the accommodation study presented here will discuss the baseline definition of

ACCESS as we understand it today. Further detail on the history, scope, and background of the

study is provided in Appendix A.



Introduction to ACCESS

ACCESS science goals

The puzzle of cosmic radiation

The origin and composition of the cosmic rays has continued to be one of the most

important problems in astrophysics since their discovery ]-3 in 1912. Although we have learned a

great deal about the nature of cosmic rays, much remains a mystery. It was believed for some

time by Lemaitre 4'5, as one of the founding fathers of the Big Bang theory, that the cosmic rays

were relics left over from the origin of the Universe. However, as experiment and observation

improved to the present day, it is now thought that these highly energetic nuclei, stripped of their

electrons, are accelerated by the shock fronts of supernovae (SN) or exploding stars. Although

this may be the source of energy, cosmic-ray origin is still unknown. The all-particle flux is

illustrated in Figure 1, representing the collective knowledge we currently have as measured from

a number of sources such as Earth-based, balloon-borne, and a few space-based detectors.

.. 10 4

_" 10 2

__o

1 o.7

-10
10

-13
10

-16

10

10-1_

10-z_

-28
1t3

\

Fluxes of Cogmi¢ Roys

(1 particleper m=-second)

:" Knee

_, (1 particle per roT-year)/

Ankle

CI porticle per km2-ye_r} _u_

..... I ...... l ..... I ....... _ ....... I ...... 1 .... ,,I ...... l , ...... I ....... t ........ I ....... 1 .... ,,,

10 = 1010 1011 101:1013 101. I0Is 101'11 1017 10 TM tO19 10 _0 10 21
_wy (7

Figure 1. The all-particle flux of cosmic rays 6.



The A CCESS science mission

ACCESS is a new mission concept 7_1 whose science goals are to address many of the

remaining questions about these cosmic rays which bathe our planet Earth. It is envisioned as the

next-generation cosmic-ray observatory for measuring the elemental composition of the cosmic

rays to very high energies, while acquiring valuable information on the individual element

abundances throughout the periodic table. In particular, it is a goal of ACCESS to explore the

possibility that SN shock fronts (Figure 2) are the acceleration mechanism for the bulk of cosmic

rays with energies in the region of the "knee" in Figure 1.

Other ACCESS science goals can be summarized as follows:

• Test SN shock acceleration models at energies up to 1015 eV.

• Measure energy dependence of secondary to primary elements.

• Distinguish between first ionization potential (FIP) source injection versus

acceleration from dust grains.

• Measure separately elements synthesized by s-process (slow) and r-process (rapid).

Figure 2. Supernova 1987A.



Themoreabundantnuclei, lighterthanFe,will bemeasuredto energiesof about 1015 eV.

ACCESS will be capable of detecting fluxes of ultra-heavy (UH) nuclei more massive than Fe,

and will do this with high charge (Z) resolution. This should allow important new measurements

of elements at least to Z=83 (Bi). These data will prove valuable in our understanding of the

nucleosynthesis of such elements and their abundances in the Universe.

The ACCESS mission will consist of a large-area detector (several square meters) deployed

on the ISS for at least 4 years' duration. The result should be a cosmic-ray observatory in low

Earth orbit (LEO) with a collecting power (area x exposure time) approaching 10,000 m2-sr-days.

From Figure 1, such a collecting power should result in about 10 measurements in the neighbor-

hood of the cosmic-ray "knee" during this mission. ACCESS would be launched on board the

Space Shuttle, and attached to the ISS sometime after final assembly of that orbiting laboratory.

Present plans expect this deployment of ACCESS to occur around the year 2005.

The baseline ACCESS instrument

The baseline ACCESS instrument addressed in this study will consist of three detectors.

The first is a Bi germanate (BGO) calorimeter for measuring the energy spectra of H and He, and

limited numbers of heavier elements, up to 1015 eV. The second is a transition radiation detector

(TRD) capable of measuring the energy spectra of Li to Fe. The third detector is the charge

module (CM) or "Z" identification module (ZIM) for element identification of UHs and the

lighter cosmic rays. Figure 3, depicting the collective instrument, illustrates one of the four

structural options considered in this study as a baseline design for ACCESS instrument

geometry.

Since the CM is located at the top of the ACCESS instrument, it must be capable of

measuring the charge (Z) of all incident particles, from H through U, with dynamic range > 10 4.

Overall, the CM is optimized for measurement of UH nuclei, and the charge measurements for

the lighter particles are needed by the TRD and calorimeter modules. The CM contains two

layers of Si detectors that provide excellent charge resolution up to Z>80. The Si detector near

the bottom of the module provides a redundant charge measurement and identifies particles

which interact. Two layers of scintillating fiber hodoscopes, located on the top and bottom, are

used to determine the incident particle trajectory, and two Cherenkov detectors measure the

particle velocity. For a 1000-day exposure the CM should collect more than a hundred Pt and Pb

events with single-charge resolution.

The TRD module consists of six radiator layers, each of which is followed by a stack of

gas-filled proportional tubes to measure the transition radiation X-ray photons. Alternate propor-

tional tube layers are oriented at right angles so that the trajectory of the incident particle can be

determined. Scintillators at the top and bottom measure the charge upon entry and exit from the

module. Transition radiation is emitted for a high-energy charged particle passing between two

regions of differing indices of refraction. The photon yield is proportional to Z 2 and the Lorentz

factor (7, gamma) of the particle and to the number of layers ('transitions'). The TRD covers a

broad energy range up to a gamma of about 50,000 and should be able to observe Li and heavier
nuclei.



Figure 3.
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One of four instrument configurations assumed in the baseline ACCESS study.

The hadron calorimeter is composed of a one-interaction-length target of inert C (carbon)

followed by a fully active, segmented calorimeter constructed from BGO crystals. Scintillator

hodoscope planes are interspersed within the C to provide a fast trigger, and a Si matrix detector

above the target provides a charge measurement for events that may have, or may have not,

passed through the CM. The thickness of the BGO is selected to obtain better than 63% energy

resolution to the highest energies. The target provides an interaction probability for H of about

50%, so for a 1000-day exposure the collecting power of the calorimeter is about 500 m2-sr-days.

Additional information and detail on the three separate ACCESS detector systems, the

BGO calorimeter, the CM, and the TRD, are provided in Appendix B, along with a composite

representation of the consolidated instrument. The different structural options are defined in

Appendix G.

Science detail

"How do cosmic rays gain their enormous energies? .... What is the source of the material

that goes into their 'cosmic accelerator' to become high-energy cosmic rays? .... How do these

high-energy particles propagate within, and escape from, our Galaxy?" Those are some of the

principal science questions that the ACCESS mission is designed to address. The astrophysical

implications are of central importance to the "Structure and Evolution of the Universe" theme in

NASA's Office of Space Science.



Cosmicrayscontainthenucleiof atoms covering all of the periodic table (H .... Fe ..... U) as

well as electrons, X rays, gamma rays, anti-protons, positrons, and neutrinos. These are all at

high energy, extending well beyond the energies available in terrestrial accelerators. The cosmic

rays fill our Galaxy, as well as other galaxies, and are an important component in the dynamics of

the Galactic disk. Cosmic-ray electrons are the source of the important radio synchrotron

emission from all galaxies, and cosmic rays are a source of the high-energy photons observed in

gamma-ray experiments. We know quite a bit about the cosmic rays from many decades of

study, yet their exact source and the details of their acceleration to high energy remain a mystery.

ACCESS is designed to tackle this problem by extending current knowledge to the high-energy

and high-Z frontiers.
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Differential energy spectra of H, He, C, and Fe.

One of the keys to unlocking the acceleration question is measurements of the energy

spectra of individual elements. Figure 4 is a compilation of data on the differential energy

spectrum of H, He, C and Fe 12J3. At low energies (< GeV/nucleon) the spectra roll over due to

solar modulation effects. Above ~10 GeV/nucleon the spectra are power laws. To look at still

higher energies, we must utilize the all-particle spectrum (which can be measured with ground-

based air shower arrays). What is found appears to be a "knee" or change in index of the power

law in the vicinity of 1015 eV/particle. This is illustrated in Figure 5 where the flux has been

multiplied by E 275 to flatten or "remove" the power law in the region of the spectral change 14



Thesteeperspectrumthenextendsupto near1019eV withoutanotherchange.It is theenergy
regionbeyondthedatashownin Figure4 upto the"knee" regionof Figures1and5 that is the
targetof theACCESSenergyspectrameasurements.

Figure5 alsogivestheprotongyroradiusin anassumed3 micro-gaussinterstellarmagnetic
field, which, for theenergiesbeingstudied,is lessthana fewparsecs.This implies thatthe
particlesareeasilyconfinedin ourGalaxy.More importantis thescaleat thebottom, which
indicatesthatthesehigh-energyeventshaveintensitiesbetween1perm2-sr-dayand 1perm2-sr-
month. That is, theyare"rare," requiringlarge-areadetectorsandlongexposuretimesfor
detailedstudy.

Thecurrenttheoreticalmodelthatpurportsto explainthecosmic-rayspectrabelow the
kneeinvolvesparticleaccelerationin SNremnants(SNRs)bytheshockwavespropagatingfrom
theexplosioninto thesurroundingmatter,e.g.the interstellarmedium15'16.This "shockwave
acceleration"is predictedto yield power-lawenergyspectra,andthereis sufficientenergyavail-
ablein SN to replenishtheenergyin thecosmicrays. Themechanismof shockaccelerationhas
beenobservedto workwithin theheliosphere,e.g.,at planetarybow shocks,at interplanetary
shocksin thesolarwind,andat thesolarwind terminationshock. It isbelievedto beaprevalent
processin astrophysicalplasmasonall scalesthroughouttheuniverse.It is acharacteristicof
diffusive shockaccelerationthat theresultingparticleenergyspectrumis muchthe samefor a
widerangeof parameters,or shockproperties.This energyspectrum,whencorrectedfor leakage
from theGalaxy,is approximatelyconsistentwith theobservedspectrumof galacticcosmicrays
shownin Figure4.

Figure 5.
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Thisattractivemodelpredictsacutoff in thepower-lawspectrum.Theshock-accelerated
particlespick upasmall incrementof energyeachtimetheycrossthe shockboundary,in a
random-walking(diffusing)process.Thus,themaximumenergyaccessiblein agivensituation
dependsontherateat which the particles diffuse back and forth across the shock (i.e., on the

magnetic field) and on how long the acceleration mechanism acts. For a SN shock, the time and

distance scales are much longer than the scales encountered in the heliosphere, so the corre-

sponding energies are much larger. However, the available acceleration time is limited by the

time taken for the blast wave to propagate outward and to weaken to the point that it is no longer

an efficient accelerator. In the most commonly used form of the theory, the characteristic energy

is about Z x 1014 eW, where Z is the particle charge 17. This implies that the cosmic-ray composi-

tion would begin to change beyond about 10 TM eV, the limiting energy for protons; Fe would start

to steepen at an energy 26 times higher. Thus, we expect the H spectrum to fall off first (in total

energy), followed by He and the higher-Z nuclei. As the energy increases, the fraction of heavy

nuclei also increases. This is the characteristic signature of the SNR shock acceleration process

that ACCESS is designed to detect.

Whether the "knee" feature in the all-particle spectrum is related to the termination of the

SN acceleration mechanism is one of the questions that must be solved. However, the cosmic

rays do extend to much higher energies, and this implies that, if the SN blast wave mechanism

"cuts off" as expected, a new source must be invoked for the still higher energy particles. One

idea is that these could be accelerated by the collective action of several SN blast waves. Since

all components would come from the same class of source, both below and through the knee

region, then the relative composition would depend on energy in a prescribed way. Furthermore,

since the acceleration is mediated by the magnetic field, then the spectra of all species should be

the same when compared as a function of magnetic rigidity.

Another view suggests that if the progenitor were a massive star with a strong wind (like

SN 1987A), then the explosion would not be into the general interstellar medium, but rather into

the atmosphere swept out by the wind of the progenitor star. In this situation, one would expect

the acceleration rate to be determined at first by the magnetic field of the progenitor's wind,

which might be significantly higher than that in the interstellar medium. Consequently, the

acceleration rate could be higher, and the particles could reach higher energies than are achieved

for an explosion into the general interstellar medium.

Finally, compact objects, especially neutron stars in various environments, have also been

suggested as a possible new source of accelerators to supply particles above the knee region.

Possibilities include: (1) the spin-down power of rapidly rotating neutron stars to accelerate

particles in pulsar magnetospheres; and (2) the accretion power in binary systems in which matter

from a companion star is falling onto the surface of a compact partner.

Whatever the case, it will be the direct composition measurements at energies approaching

the "knee" which will provide the first clues to this new source of particles.

Figure 6 is a 1993 compilation of high-energy results for the charge ranges, H, He, CNO,

Ne-S and the Fe group by Swordy 6. The data are based on a variety of experimental techniques

including passive emulsion chambers, ionization calorimeters, a magnetic spectrometer, a ring-

imaging Cerenkov detector, TRDs, and Cerenkov counters. Note that the flux values are multi-

plied by E 2"75and the scale is energy per nucleon. (A horizontal line corresponds to an E 2"75

energy spectrum, with smaller power-law indices having a positive slope.)



A cursory view of Figure 6 indicates that the highest energy data extend up to roughly

1014 eV for protons and lower energies for the heavier components. Note the unexpected

behavior, in that the flux of He relative to protons increases with energy. At low energy, below

-102 GeV/nucleon, the H and He show about the same slope. Above about 100 GeV/nucleon,

however, the H becomes almost flat (i.e. E -2'75spectrum), while the He continues to increase (i.e.

about E -2'65 spectrum). This behavior has been interpreted as evidence for two different types of
sources or acceleration mechanisms TM for H and He.
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Figure 6. Compiled high-energy spectra for H and He (left) and CNO, Ne-S, and Fe group

(right).

At the highest energies in Figures 6 (few x 104 GeV/nucleon), the proton spectrum appears

to roll-off or bend, but this occurs at an energy that is a factor of -2 below the expected cutoff for

SNR shock acceleration. Note that He shows no tendency to change slope, within the limited

statistics, to the highest energies shown. However, one must be careful in interpreting these data

since the statistics for the highest energy points are very small, i.e. a few particles per bin. More

recent data 19 do not show the tendency for the proton spectrum to roll off.

It is clear from Figure 6 that the spectra of the groups of heavier elements are similar to He

but show a trend toward flatter spectra with increasing energy. Specifically, the spectral slopes at



higher energies seem to be close to values around 2.5 to 2.6, significantly flatter than the values

reported at lower energies by previous space experiments 2°'21. However, again, the results are

statistically limited and there may be normalization uncertainties between the different

experiments.

The data in Figure 6 are intriguing. They suggest that something may be changing in this

high-energy region around the knee, possibly related to the SNR shock acceleration process.

Clearly, unraveling these questions requires comprehensive new data for the individual elements,

H-Ni, extending to as high an energy as possible.

An equally compelling question for ACCESS is the nature of the material injected into the

cosmic-ray accelerator. Here the important measurement is the relative composition of the

cosmic rays themselves, at all energies. Previous work at low energy (<10 GeV/nucleon) has

determined the relative abundances of each of the elements up to Zn, and of groups of elements

beyond Z=30 to the end of the periodic table. Figure 7, for example, gives a compilation of

results for the UH, Z-2_30, region, compared to the relative abundances measured in the solar

system, shown as the histogram 17. These measurements were obtained by two previous satellite

experiments 23'24. Note that the scale is normalized to a million Fe nuclei, demonstrating the

rarity of these UH cosmic rays and, again, the need for large-area detectors exposed for long

durations in space. The best of these previous measurements were not able to separate the odd-Z

elements from the neighboring even-Z elements over the full charge and energy range, which

limits the conclusions that can be derived from the data. Measurements with single-charge

resolution, spanning the periodic table, are a principal goal for ACCESS.
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The UH elements are particularly interesting since they are formed mainly by neutron

capture reactions, unlike the lower-Z elements which are synthesized by charged particle

reactions. From an analysis of the solar system abundance distribution, the neutron capture

reactions have occurred in two distinct processes, called the r- and s-processes. The r-process is

characterized by neutron capture rates much faster than the beta decay rates so that nuclei are

driven far from the valley of beta stability. The s-process, however, is a longer-term exposure

since the neutron capture rates are less than the beta decay rates producing synthesis of elements

along the valley of beta stability. The UH cosmic rays of Figure 7 are evidence for the presence

of both s-process and r-process components, but the data are not precise enough to determine the

exact mixture. If the cosmic-ray material is indeed solar system-like, we would expect the mix to

be similar to the solar system. On the other hand, if there is a component of freshly synthesized

matter among the cosmic rays, e.g. from SN, then a different mixture would be indicated.
ACCESS measurements of the individual element abundances should allow the r- and s-process

contributions to be evaluated at low energy.

It has been known for many years that the cosmic rays arriving at Earth contain both

primary nuclei that originated at the source and secondary nuclei formed en route by nuclear

interactions of the primary nuclei with atoms in the interstellar medium through which they

propagate. This transformation process has been studied experimentally by means of measure-

ments of nuclei that are purely secondary, such as Li, Be, B, F, and the sub-Fe elements (Sc,V),

all of which are extremely rare in the universe, but are orders of magnitude more abundant

among the cosmic rays.

Figure 8 shows one such secondary-to-primary ratio, B/C, as a function of energy25. From

the peak near 1 GeV/nucleon, the ratio decreases both to lower energies, due to the energy

dependence of the cross sections combined with ionization energy loss and solar modulation, and

to higher energies, due to escape from the confinement region. Cosmic-ray propagation at
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energies above 1 TeV/nucleon is dominated by escape from the Galaxy. The mean escape length

decreases with increasing energy up to ~ 100 GeV/nucleon 26, and it has been suggested that the

flattening of the heavy nuclei spectra in Figure 6 could be explained by a less severe decline in

the escape length above 1 TeV/nucleon, an energy range for which there are currently no reliable

data. ACCESS will be able to extend the measurements of Figure 8 to higher energies to

investigate this energy dependence.

Transport models for cosmic-ray propagation in the Galaxy have been developed which, in

essence, work backwards from the measured composition, unfold the secondary component, and

determine the relative abundances of the elements at the source(s) of the cosmic rays _2. These

models utilize the secondary-to-primary ratios, such as Figure 8, and incorporate the large body

of nuclear fragmentation cross section data 25. Uncertainties on the derived source abundances

range from 5%-20% for the abundant, mostly primary species to factors of two or more for

elements with large secondary contributions 27. However, these source abundances provide a

means to study the cosmic-ray source matter.

A comparison of this cosmic-ray source composition to matter in the solar system shows

that there are systematic differences. The source matter is rich in elements like Fe, Ni, A1, Mg,

and deficient in H, He, C, O, and Ar. This pattern can be organized by the FIP of the elements, a

recent example 28 of which is presented in Figure 9. Plotted is the ratio of the cosmic-ray source

abundance to the solar system abundance, normalized to H. The abundances divide into three

regions: low-FIP elements, which are most overabundant; high-FIP elements, which are much

less overabundant; and a transition region between the two groups. This FIP dependence does a

moderately good job of organizing the abundances, but it is by no means perfect. (The very low

abundance of H, the normalization point, and He stand out.) Deviations, of course, may be due

to remaining uncertainties in the abundance measurements themselves. Note particularly the

uncertainties for many of the UH elements. ACCESS measurements will certainly improve these
values.

The FIP pattern in Figure 9, when viewed in a thermal, collisional excitation model,

requires temperatures of about 10,000 °K. This suggests an origin in stellar atmospheres rather

than in the interstellar medium, if ionization is the controlling mechanism. However, this may

not be correct. Although FIP appears to be an organizing parameter, it may not be the astro-

physically important one, i.e. FIP may be an alias for something else. FIP is closely correlated

with volatility or condensation temperature, for example. The low-FIP elements tend to be the

least volatile (refractories) and have higher condensation temperatures. This suggests that the

FIP dependence could be implying that some of the cosmic-ray source matter has been condensed

into dust grains. This would require preferential acceleration of atoms sputtered from the grains,

as has been suggested in a recent model for SNR-based cosmic-ray acceleration 29. Whether or

not the cosmic-ray source matter is in the gaseous state or bound into grains is a very important

question for determining the environment in the acceleration region, particularly if SNRs are

involved.

Distinguishing between the "grain or gas" origin is possible since there are a few elements

that break the FIP-versus-condensation-temperature correlation. These elements, e.g. As, Br, Rb,

In, and Cs, are mainly in the UH region of the charge spectrum and are, for the most part, the

rarer, odd-Z elements. With the single-element resolution planned for ACCESS's CM, obtaining

12



good measurements of elements such as these will be possible, for the first time. This should

allow ACCESS to address the "grain" hypothesis.
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Figure 9. Galactic cosmic-ray source abundances divided by solar abundances vs FIP.

In summary, ACCESS holds the promise of answering some of the long-standing questions

in cosmic-ray astrophysics: the cosmic-ray accelerator, propagation in the Galaxy, source

abundances, nucleosynthesis, and the importance of interstellar grains. This is already a large

science return. However, it may be possible to utilize ACCESS to measure electrons as well.

The combination of a calorimeter in conjunction with TRDs has been employed previously for

studying electrons, and such measurements are being investigated as a secondary science goal.

At energies of a TeV (1012 eV) and above, electrons cannot propagate very far in the interstellar

magnetic fields, so electrons observed at these energies would come only from "nearby" sources.

Overall, the new information ACCESS provides may dramatically change our understanding

of the Galactic cosmic rays.

13



ACCESS Mission Plan: Baseline

As originally conceived, ACCESS was intended to be an ISS payload that would replace

the AMS 3° when the latter is retrieved and brought back to Earth following a three-year stay.

Under this scenario, ACCESS would in fact occupy the same ISS attached payload site as AMS.

However, as the ACCESS conceptual design has matured, the consensus of opinion is that

ACCESS must be prepared to occupy ISS attached payload sites on either side (port or starboard)

in order to maintain program schedules, should the AMS experiment stay longer than expected

on orbit. ACCESS is being planned for a four-year stay.

Figure 10 depicts the current ISS conceptual configuration with ACCESS attached at

payload Site $3 UI (S for starboard, U for upper, and I for inboard). Should both ACCESS and

AMS be resident on ISS at the same time, ACCESS will then be assumed to take its position

temporarily on the port side of the Space Station at Site P3 UI (P for port).

Figure 10. Currently planned ISS configuration with ACCESS attached at Site S3.
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ISS Resources and Constraints

General

Upon its completion, the ISS will be the largest orbiting laboratory in LEO ever

constructed. This build-up process (Appendix C), already begun with the successful launch of

the first element Zarya on November 20, 1998, will take approximately five or six years until

completion around April 2004 with the attachment of the U.S. habitation module after some

43 assembly flights.

PAS

Figure 11. One possible configuration of ACCESS on the $3 truss site.

The ISS structure will be a very large-scale science and engineering outpost in LEO at the

threshold of space, which will provide experiments such as ACCESS an impressive view of the

astrophysical Universe, illustrated in Figure l 1. The scale of the ISS is indicated by the

following statistics.

• Mass 1,040, 000 lb • Power 110 kilowatts

• Length 356.4feet • Altitude 220 n. mi. (mean)

• Width 290feet • Crew Up to seven

• Height 131feet • Orbits/day 18

15



Basic resource provisions

Having been launched by the Space Shuttle, ACCESS will be deployed robotically and

attached to the payload attach system (PAS) which is located on the integrated truss segment of

the ISS. The PAS provides the essential hardware and functional requirements interface, giving

the 'life blood' resources available from the ISS to the payload. These are hardware structural

support, power, and data interfaces. ISS provisions and accommodations combine to establish a

stable orbiting platform with altitude and attitude control for ACCESS, depicted within its

support carrier as a payload in Figure 11 above.

The payload integration hardware at the PAS is further illustrated in Figure 12, showing the

capture latch assembly, the V-guides, and umbilical mechanism assembly (UMA). The UMA is

the critical device that provides electrical power as well as telemetry data and command inter-

faces for ISS payloads, consisting of an active portion on the PAS itself, which connects with a

passive portion on the payload's carrier.

I IEA HINGE POINT

¥ X
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V-GUIDE

-PLATFORM

ZUMBILICAL
MFCHANISM

ASSEMBLv
(ACTIVE tHALF)

-VANE 3

DEPLOYABLE
SUPPORT

CAPTURE LATCH
ASSEMBLY

Figure 12a. ISS PAS integration hardware.
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$3/P3 truss attach sites

The ISS truss attach site accommodations at the PAS UMA interface (Figure 12) are given
in Table 1.

Table 1. Summary of Site $3/P3 Payload Accommodations

• Power 113 VDC (effective) at 3 kW to each site

80% duty cycle at 1 kW, 100 W keep-alive

• Mass See the "Carrier issues" section of this report.

• Volume 2.6m x 4.3m x height

• Low-rate data MIL-STD-1553B (command, control, & telemetry)

<1 Mbps, 2 twisted shielded-wire pairs payload

multiplexer/demultiplexer (MDM)

• High-rate data 43 Mbps via fiber optic link to Ku-band data link
• Thermal control Passive

• SSP* 57003 Controlling document

• SSP 52000-PAH-TAP Controlling document

• SSP 52000-IRD-TAP Controlling document

• SSP 52000-PAH-LSP Controlling document
*Space Station Program (document)

- _ _'_ _,_ _a=

passive half

Figure 12b. Detail of the UMA in Figure 12a.

A functional block diagram of the PAS and UMA interfaces is provided in Appendix H.3.
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ISS environments

The pertinent ISS operational characteristics which influence the ACCESS mission are

summarized below, with controlling documents defined in Appendix D.

Orbit and ephemeris

• Inclination

• Geocentric altitude

• Perturbations

• Limitation, constraint

51.6 degree, near circular

350-460 km (190-248 n.mi.), periodic re-boosts

Gravitational, atmospheric drag, solar cycle

Soyuz de-orbit (maximum altitude of 470-480 km)

Space radiation environment

• ISS design altitude

• Trapped radiation belts
• Auroral zone

• South Atlantic Anomaly
• Solar flares

• Galactic cosmic rays

• Risk mitigation

• SSP 30512

500 km (Space Station Program Office and Boeing-Prime

requirement)

Protons and electrons, requiring -250 mils shielding

Protons and electrons, higher concentration

Protons and electrons, higher concentration

Low- and high-energy nuclei; heavy ions

Low- and high-energy nuclei; heavy ions

Shielding (low-energy flux); multi-path redundancy and ops

work-around, power off (high-energy flux)

Controlling document

Micrometeoroid and debris environment

• SSP 30425, Rev. B

• Whipple shields

Controlling document

Present method of risk mitigation

Induced plasma environment

• ISS floating potential Controlled by plasma contactors (_+ 40 volts)

External contamination constraints

• Molecular contamination
II |I

• Molecular column density

• Particulate background

Quiescent lxl0 -14 g/cm 2 s (- 30 angstroms/year)

Nonquiescent 1x 10 .6 g/cm 2 s (- 100 angstroms/year)

1x 1014 molecules/era z

One 100 micron particle per 10 .5 steradian per orbit

Electromagnetic radiation environment

• Radio-frequency emissions
• SSP 41000

• SSP 57003

Radiated susceptibility field limits (volts/meter), all

Controlling document

Controlling document
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Basic ACCESS constraints

It is already known that there will be periods of reduced payload accommodation for

ACCESS. This includes a "keep-alive" condition (with minimal power accommodation) during

STS (Shuttle) launch, rendezvous, docking, and deployment to the attached payload site. Also,

an overall ISS duty cycle of 75%-80% has been estimated for such attached payloads. The actual

duty cycle is unknown at the present time, because it is a function of how many payloads will be

present on the ISS. It could be as much as 500 W and as little as 100 W. The "golden rule" is to

design the keep-alive dependence to be as small as possible. The power accommodation for

keep-alive will be written into the Program Initiation Agreement (PIA).

The current baseline mission plan for ACCESS has been to remain unpowered during

launch to the ISS, although there has been discussion of a powered keep-alive requirement prior

to PAS and UMA activation in order to stabilize the temperature of the pressurized gas supply in

the TRD instrument throughout the mission. NASA may also consider performing a post-launch

payload functional test prior to unberthing from the Shuttle payload bay. Such power is available

as an STS accommodation if it becomes necessary, although the situation is made somewhat

awkward by three fundamental differences that currently exist between the Space Shuttle and the

ISS:

• STS power is 28 VDC while ISS PAS power is 120 VDC.

• STS high-rate data travels via copper wire while the ISS uses fiber optics.

• STS low-rate data and command is via the payload signal processor and payload data

interleaver, while the ISS uses a 1553 data bus.

See Appendix H for further discussion of STS power and data accommodations.

Following a four-year mission lifetime, ACCESS is to be removed from the attach site

and returned to Earth. At the end of its mission, the science payload will be returned to the

instrument provider. A final postflight calibration verification is under consideration.

A detailed discussion of all ISS environments in the space segment (LEO) which constrain

its payloads is given in Appendix G.
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ACCESS Accommodation on STS

Carrier issues

Summary

The carrier is the mechanical support structure that contains the ACCESS instrument, as

shown in Figure 11. The carrier combined with the science instrument constitutes the total

ACCESS payload. It must be suitable for both the ACCESS launch vehicle (STS) and the ISS

PAS. It must also obviously have the structural and mechanical properties to withstand the stress

and vibration loads of launch, on-orbit operations, descent, and landing. However, as with any

aircraft or spacecraft cargo it must comply with certain center-of-gravity (CG) envelopes and

volume constraints (Appendix F). This is the familiar "weight-and-balance" problem known to

pilots everywhere, which precludes a loss of dynamic vehicle control.

These Shuttle/ISS mass-property constraints are summarized in Table 2.

Table 2. Critical Mass Properties Constraints

• Upmass limitations

• Maximum allowable PAS payload mass

• CG constraints

• Volume constraints

• The payload CG should be high in the Shuttle bay, and low on the ISS PAS.

The first four conditions drive the ISS weight limit. The "upmass" is the negotiated mass

allocable to a U.S. payload on the subject utility flight (UF) in the ISS assembly sequence

(Appendix C) or thereafter. The fifth drives the payload CG to fall along or near the trunnion

sill-level in the Shuttle cargo bay.

That last constraint derives from the fact that, by design, the dynamic load performance for

the Space Shuttle (launch, re-entry, and landing) is not equivalent to that for the ISS (quiescent

and on-orbit re-boost). The Johnson Space Center (JSC) ACCESS Accommodation Study Team

resolved this restraint at the outset9: Simply turn the ACCESS instrument sideways when in the

Shuttle bay. Because most of the mass of the baseline ACCESS instrument resides in the

calorimeter it easily passes the ISS constraint since it is at the "bottom" of the carrier in Figure 11

and is pressed up against the PAS.

The second category of payload carrier issues involves the frequency response of its

structural design and the materials used. These constraints are summarized in Table 3. All ISS

and STS payloads must go through a number of safety reviews, Phase-zero through Phase-l/I (see

Safety, Table 20 below, for timing of phases). Depending upon the flight readiness of their

structural design and the materials chosen, a payload can pass or fail these reviews.
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Table 3. Critical Shuttle Load and Materials Constraints

• All Shuttle payloads are required to perform static testing (per NSTS [National Space

Transportation System]- 14046).

• All Shuttle payloads are required to perform a modal test and correlate theirfinite

element model (FEM) for all modes below 50 Hz (per NSTS-14046).

• All Shuttle payload structure must comprise material complying with properties from

Military. Handbook 5G, or undergo independent safety reviews.

• All fasteners must comply with the JSCfastener integri_ program (JSC 73642).

The material usage in Item 3 of Table 3 must be verified in accordance with applicable

requirements in the appropriate controlling documentation (Payload Specific ICD [Interface

Control Document], NSTS- 14046, NSTS- 1700.7B, or SSP-50021 for SSP cargo elements).

Shuttle bay geometry

It has been assumed in this Accommodation Study that the trunnion spacing in the Shuttle

payload bay must be identical to the unique support structure (USS) carrier (addressed in detail

below under ISS carrier options). This is not a firm requirement, but the baseline ACCESS

mission plan previously discussed (Figure 10) was meant to cover the launch and retrieval

scenario in which ACCESS would be swapped out for the first major ISS particle physics

payload, the AMS. This assumption requires that the geometry of the AMS and ACCESS have

identical trunnion hardware interfaces in the Shuttle cargo bay.

It is possible to change the Shuttle attach points for any new carrier, however. The AMS USS

has five trunnions that attach to the Shuttle payload bay. The two primary trunnions (which carry

Shuttle X and Z loads) are located toward the back of the payload bay. The two secondary

trunnions (which carry Shuttle Z loads) are 70.8 inches forward of the primary trunnions. The

keel trunnion (which carries Shuttle Y loads) is centered between the four longeron trunnions.

Clearly, if ACCESS utilizes the USS (Figure 13), then this assumption would not be an issue, ff

ACCESS uses a new carrier structure, the trunnion spacing and orientation is still fixed by the

design of the USS per this baseline mission plan assumption.

STS robotic interface

The robotic interfaces to the Shuttle are described in NSTS-21000-1DD-ISS, Sections 13

and 14. This document also deals with a variety of different issues related to the remotely

operable electrical umbilical (ROEU) and the Shuttle and Station grapple fixtures which are the

direct hardware STS-to-payload interface for robotic cargo logistics, transfer, and handover to the

ISS, as well as retrieval, descent, and landing.
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STS power and command & data handling (C&DH) interface

The STS power and C&DH accommodation is unique and different from the ISS.

The ROEU is an umbilical connector that provides capability for transferring STS power

(28 VDC) to the payload. It also accommodates a 1553 data bus, and a copper-wire high-rate

interface while the payload is still in the payload bay of the Shuttle. This is one form of "keep-

alive" power. Currently the Shuttle has two different types of grapple fixtures, the flight

releasable grapple fixture (FRGF) and the electrical flight releasable grapple fixture (EFGF, also

28 VDC). The EFGF's movable grapple shaft extends and retracts an electrical connector to the

payload.

As discussed previously under "Basic ACCESS Constraints," 120 VDC power is not

provided in the Shuttle payload bay unless it is outfitted with an assembly power converter unit

(APCU) for converting the STS 28 VDC power to 120 VDC. Similarly for the data, there is a

data incompatibility at this interface. The Shuttle bay must be outfitted with a data conversion

unit (DCU) to convert payload high-rate fiber optic data to the STS copper-wire interface in

order to bootstrap it into the Ku-band downlink or to record it in the shirtsleeve environment of

the crew cabin. The Shuttle, furthermore, must be outfitted with an Orbiter interface unit (OIU)

in order to get the 1553 low rate command and data into the Orbiter S-band uplink and downlink.

Therefore, under existing STS design the Shuttle Orbiter must be equipped with an APCU,

an ROEU, a DCU, and an OIU to power up the ACCESS payload while still in the Shuttle

payload bay and transmit any of its high-rate science data downlink (e.g., as a functional test

before deployment to the ISS), unless it operates off of 28 VDC and 120 VDC. If, on the other

hand, ACCESS were only concerned with a keep-alive thermal control capability (e.g., heaters)

along with a low-rate housekeeping S-band downlink, the APCU could be eliminated if the

payload heater system could operate off of the ROEU's 28 VDC.

See Appendix H for further discussion of STS power and data interfaces.

STS hardware interfaces

The subject of STS hardware interfaces is discussed in the Carrier analysis section of this

report and in Appendix H.
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ACCESS Accommodation on ISS

Experiment carrier structures (ECSs)

Summary

The initial task of this feasibility study was to determine if the ACCESS experiment could

utilize the existing design of the USS (Figure 13) prepared, developed, and flown by JSC on a

precursor flight for the first high-energy particle physics experiment (AMS) destined for the ISS.

As the science definition of ACCESS progressed through the study, however, it became obvious

that several carrier options were available. These are defined in detail in Appendix E. This

report will focus upon two of these. The first is the original USS design, because it was the

going-in concept. The second is a totally new design called an ECS, described below.

• We recommend the ECS.

• Comparison of the USS with ECS is given in Tables 4 and 5.

• JSC carrier deliverables are given in Table 6.

USS

This study has demonstrated that, with modifications, the USS can accommodate the

ACCESS experiment 3J. However, in order for the ACCESS payload to fit within the existing

USS design, size, and weight, certain limitations must be placed on the ACCESS experiment.

Recent developments with the PAS on the $3 segment of the ISS will increase the overall cost to

the ACCESS payload under the USS option. Since it was developed for another experiment,

adapting the USS to ACCESS is tess mass-efficient than a carrier designed specifically for

ACCESS.

Figure 13. USS design.
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ECS

A new ECS design was therefore investigated, several versions of which are presented.

One ECS (Option 3) was chosen as the best potential candidate for the ACCESS support struc-

ture, but all are viable. The design goals for the ECS were to minimize the overall weight of the

support carrier while providing for flexibility in the event of unforeseen changes to the experi-

ment design. Another important goal for the design of the ECS was to ensure that the PAS can

accommodate the experiment structurally while minimizing the overall design cost.

The ECS has several advantages that are included in Table 4.

Table 4. ECS Advantages

• Lightweight

• Easy to build

• Low cost

• Extremelyflexible to accommodate changes in the experiment design

• Utilization of existing test3_txtures and ground handling equipment (GHE)

• No research and development program, special testing, or special certification

necessary (since constructed with proven methods and materials)

Cost and readiness (schedule)

The current estimated cost to modify the USS for accommodation of the ACCESS mission is

$2.1-$2.4 million. A certified structure can be ready for shipment 12 months after definition of the

experiment and the interfaces to the USS. Because of the size and weight limitations of the USS

and the increased cost to modify the USS to accommodate new PAS requirements (discussed

below), the USS becomes an increasingly limiting support structure.

The current estimated cost to build the new ECS is $2.2-$2.6 million. A certified structure

can be ready for shipment 19 months after definition of the experiment and the interfaces to the
ECS.

Table 5 below recapitulates the JSC carrier costs and readiness for side-by-side comparison.

Table 5. USS versus ECS Comparison Summary

USS cost: $2.1M - $2.4M ° ECS cost: $2.2M - $2.6M

USS readiness: 12 months ° ECS readiness: 19 months
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Mechanical interface to the ISS

As mentioned, the current proposed attach site for ACCESS on the ISS is at the upper-

inboard $3 Site (Figure 11). All attached payloads at this site connect with the ISS through the

PAS interface illustrated in Figure 12.

The ISS program is currently working on Change Request 1135 (CR1135) that will finalize

the interface requirements for the PAS attach sites 32. CRI 135 will define the weight and CG

limits, the total volume envelopes, the mobile transporter envelopes, and the extravehicular

activity (EVA) and extravehicular robotic activity envelopes and requirements. Final results of

CR1135 should be available by spring or summer 1999. ACCESS accommodation requirements

will not be ultimately known until this ISS re-definition is completed. From discussions with

Boeing (Huntington Beach) in September 1998, it is obvious that the current design of the USS

launched on STS-91 on June 2, 1998, will not meet new PAS requirements expected under

CR1135. When the USS was designed, it was acceptable for the USS keel trunnion to extend

into the plane of the PAS (Figure 14). The USS was also well within the published weight and

CG capabilities of the PAS. With changes to the PAS requirements, the intrusive keel is no

/
/

/

PAS Adapter IEquipment

Keel Trunnion Protrudes

Through PAS Plane

Figure 14. USS/ACCESS with PAS.

longer acceptable because it comes within inches of the PAS latching motor. Therefore, a

retractable keel assembly will be necessary to use the USS as a carrier. It is estimated that the

retractable keel will be an extremely costly burden on the USS. It is also likely that the weight
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and CG capabilities 33 (Appendix F) that were initially issued in 1995 and then updated in 1997

(SSP 42131) will become much more restricted for attached ISS payloads. This means that the

overall CG of any attached payload may have to be much closer to the PAS plane than originally

specified for USS design.

In addition to changes in the PAS envelope requirements, new equipment that the attached

payload may have to provide has been identified. This equipment could add considerable cost to

the attached payload. In order to ensure two-fault tolerance on the $3 PAS sites, ACCESS may

be required to provide an EVA unloadable and removable capture bar, which is a totally new

requirement. This capture bar is part of the passive half of the PAS that is mounted to the

ACCESS payload structure. The capture bar will probably have to be prelaunch-adjustable to

ensure that the proper preload is applied to the ACCESS experiment once it is on orbit and

attached to the PAS. These new changes could prove to be fairly costly.

If ACCESS protrudes into the EVA pathways, it will probably be necessary to add EVA

handrails, tether attach points, and portable foot restraint attach points to the experiment or

support structure. Video cameras or targets may also be necessary for the berthing operations.

Currently it is uncertain who is responsible for the cost of these items. ACCESS will, at least, be

responsible for the cost of their integration onto the payload. It may also be necessary for

ACCESS to pay for the development and/or recurring manufacturing cost of some of these items.

A CCESS on the USS

The ACCESS experiment weight and volume envelope that was used in our USS study

(Option 1, Appendix E) is shown in Figure 15. A structural model of Option 1 was developed

and added to the structural model of the USS design. After a structural assessment was per-

formed in the configuration shown in Figure 16, it was demonstrated that the USS can be used

for the ACCESS payload. Several modifications will be necessary to accommodate the ACCESS

experiment. An attempt was made to minimize the cost associated with these changes, but the

following changes are necessary:

1) The calorimeter should be rotated 45 degrees (Figures 14, 16) to provide a better load path. It

was determined that this modification to the experiment configuration will not adversely affect
the science.

2) In addition to the eight existing attach points on the USS, two additional attach points would

be necessary (Figure 16). The interface between the calorimeter and the TRD should be

centered on the middle horizontal joint as shown in Figure 16.

3) Redesign of the primary and secondary sill joints and the V-braces will be necessary to

accommodate the loads from the ACCESS experiment configuration. The CG of the

ACCESS experiment is considerably lower than the USS was designed to accommodate.

This means that high loads will be applied to the support structure in places that were not

designed to take high loads.
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A FEM has been developed for this configuration. The first natural frequency of the payload

is 10.1 Hz, and the structure has only five modes below 50 Hz. From Table 3, every Shuttle payload

is required to perform a modal test and correlate the FEM for all modes below 50 Hz. This means

that the Option 1 configuration would provide for a relatively simple modal correlation. That

directly corresponds to less analysis and testing, and thus less cost to the project.

Preliminary results show all positive margins assuming such modifications are made to the

USS. It is also important to note that the USS is relatively insensitive to structural stiffness

changes of the science experiment portion as it evolves during development. A consequence is

that the experiment support structure per se (hardware required to hold the three instruments in

Appendix B together, not the carrier portion) can be fairly light. The science hardware can then

be a larger percentage of the total weight allotted to each experiment.

In addition to the changes necessary to accommodate the ACCESS experiment, a retract-

able keel would be necessary to provide the necessary attach location for the PAS (as discussed

previously). That in turn would require keep-alive power from the Shuttle in order to extend the

keel (Appendix H). A retractable keel also means more failure modes, all of which require

additional crew training. These added requirements would result in additional cost to the USS

modification for Option 1.

Weight

Table 6 shows a weight summary for the ACCESS payload on the USS. The current USS

weight is a measured value. The additional weight to modify the USS is broken into the weight

necessary to accommodate the ACCESS experiment and the weight necessary to make the

ACCESS payload deployable on the PAS. Since the USS is not optimized to carry the ACCESS

experiment, the total weight for the support structure is a fairly large percentage (22.50%) of the

total weight of the payload.

Table 6: ACCESS Weight Summary on the USS

Item Weight % of Total Weight
lb (kg)

Experiment Hardware 8488 (3858) 77.50

USS Weight 1834 (834) 16.74

Weight to Adapt ACCESS to USS 310 (141) 2.83

Weight to Make ACCESS Deployable to PAS 321 (146) 2.93

Total Payload Weight 100.00I 10952(4979)

USS advantages

Although the USS does require some redesign to accommodate the ACCESS experiment,

there are still several advantages of using an existing design for the ACCESS support structure.

ACCESS could take advantage of the fact that most of the design work for the support structure

has already been completed, and only modification design work is necessary. This would

primarily afford the payload savings of time because it is not necessary to design a completely

new structure. All of the GHE and test equipment that has already been developed for the USS
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couldbe reused.This is a significantamountof designandanalysiswork that wouldnotbe
necessary.

USS limitations

Although the USS can accommodate the ACCESS experiment as shown in Figure 15, the

Principal Investigator (PI) for the TRD expressed a strong interest in a larger detector than

shown. The USS is physically not large enough to accommodate a larger TRD (by volume).

Additionally, the USS was designed to carry the majority of the weight of the experiment at the

eight upper attach locations. The modifications necessary to support the ACCESS TRD

dimensional changes add undue weight to the original USS carrier.

Cost and schedule

As part of this accommodation study, an attempt was made to estimate the cost and

schedule needed to modify the USS to accommodate ACCESS. The total cost of modifying the

USS for ACCESS will be approximately $2.1 to $2.4 million, depending on the modifications

that are ultimately necessary, the final payload weight, and the final experiment design. This

cost is based on actual experience with across-the-bay payloads that JSC has flown recently

(1998) in space. The cost includes the necessary modifications to accommodate the ACCESS

instrumentation and the modifications necessary to incorporate the PAS into the USS.

A certified USS can be ready for shipment 12 months after the definition of the experiment and

the definition of the experiment-to-USS interfaces.

JSC carrier deliverables

The JSC total 'turnkey' carrier cost is broken out as deliverables in Table 7. The term

'turnkey' refers to the utilization of existing JSC design, certification, and integration (DC&I)

methodology, personnel, and templates.

Table 7. JSC Carrier Deliverables (End-to-End Product)

• Design with interfaces to the experiment, the Space Shuttle, and the ISS

• All necessary structural analysis

• Complete fabrication and assembly

• Complete structural certification

- Modal survey testing

- Static testing

- All special test equipment (STE)

- Ground support equipment (GSE) and GHE

- Component testing

- Materials testing

- Modal correlation

- Space Shuttle and ISS verification process support
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A CCESS on new ECS

Because the USS was not specifically designed to carry the ACCESS experiment and

because ACCESS appears to be evolving toward a larger collecting power (a larger detector

seems desirable to improve the science results), several different ECSs have been analyzed under

this Accommodation Study. The main design goals of the ECS are to minimize the overall

weight of the support structure, while providing for maximum flexibility in the event of unfore-

seen changes to the final experiment instrument. Several different experiment options have been

considered _°'_1, but Figure 17 shows the final experiment configuration that has been chosen to

provide the best alternative (Option 3, Appendix E). As the figure shows, the experiment

dimensions and total weight have increased over those shown in Figure 15 (USS option).

To accommodate the experiment as shown in Figure 17, thirteen different ECS structures

were assessed (Appendix E). Figures 18, 19, and 20 show the ECS structure that the ACCESS

Accommodation Study Team has chosen. To satisfy the design goals that were set for the ECS,

the following design decisions have been made:

• Utilize common aerospace materials for ease of manufacturing and overall

project cost savings (primarily Aluminum 7075-T7351).

• Attempt to utilize only material properties directly from Military Handbook 5G

to avoid any additional testing that will be required for more exotic materials.

Portions of the USS incorporate material thicknesses that are not shown in 5G,

so reduced material properties were deemed necessary. These reduced material

properties unnecessarily affected the design margins.

• Attempt to show preliminary design margins of 20% to 40% and decrease the

margins as the design matures.

The ECS provides a stiff support structure, but it will rely on the ACCESS experiment to

provide some internal structural support. As more integration is performed between the carrier

structure and the internal ACCESS instrument structure, the overall weight of the payload will be

optimized.

The ECS configuration will be horizontal in the payload bay of the Shuttle. This means

that the ACCESS experiment will be pointed toward the Space Shuttle crew cabin. In the USS

configuration, the experiment was pointed straight up out of the payload bay. As Figure 21

shows, the horizontal configuration allows for better adaptability to the PAS. As discussed

earlier, it is likely that the PAS weight and CG requirements will become more limiting than

previously published (e.g., CR 1135). ff this occurs, it is in the best interest of any attached

payload to have its mass and CG as close to the PAS as possible. In the horizontal ECS con-

figuration, the PAS attachment point is on the bottom of the calorimeter. Since the calorimeter is

the heaviest portion of ACCESS, the PAS is very close to the payload CG. This feature is

desirable, as mentioned earlier in the discussion of Table 2. The result can be seen in Figure 21

where the ACCESS payload is shown on the $3 truss of the ISS.
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A FEM has been developed for this configuration. The first natural frequency of the pay-

load is 9.9 Hz, and the structure has only six modes below 50 Hz. Like the USS, this means that

the ECS/ACCESS configuration would provide for a relatively simple modal correlation. This

directly corresponds to less analysis and testing, and thus less cost to the project. Preliminary

results show all positive margins above 20% for this configuration.

Weight

Table 8 gives a weight summary for the ACCESS experiment within the ECS. The total

experiment weight is allocated as shown in Figure 17. As the table indicates, the ECS weight is a

much smaller percentage of the total weight (16.34%) than was the modified USS (22.50%). The

total weight of the ECS and PAS integration hardware is 2163 lb with a total payload weight of

13,232 lb. The total weight of the modified USS and PAS integration hardware is 2465 lb with a

total payload weight of 10,952 lb. The ECS provides a support structure weight savings of over

300 lb while increasing the total payload weight by 2280 lb. This shows the significant weight

advantage of designing a dedicated structure for the ACCESS payload.

Table 8: ACCESS Weight Summary on the ECS

Item Weight % of Total Weight
lb (kg)

Experiment Hardware 11069 (5031 ) 83.66

ECS Weight 1903 (865) 14.38

Weight to Make ACCESS Deployable to PAS 260 (118) 1.96

Total Payload Weight 13232 (6014) 100.00

It should be noted that some of the other ECS configurations studied (Appendix F) relied

more heavily on the ACCESS internal instrument structure to share some of the loads. Although

this can bring the weight down, it depends heavily upon a closely knit science integration team,

and should one instrument's schedule slip significantly, the collective program cost can be

increased dramatically. The total weight of the lightest ECS (including PAS integration hard-

ware) is 1808 lb (14.04% of total weight) with a total payload weight of 12,877 lb. Details on

this structure are available 34. Further definition of the ACCESS internal experiment structure

will lead to an even lighter ECS.

ECS advantages

The ECS provides several key advantages simply because it optimizes the cartier design for

the specific ACCESS instrumentation. The structure is lightweight, easy to build, relatively low

cost, and is extremely flexible to accommodate changes in the three respective experiment designs.

In addition, because the ECS will be built with proven methods and materials, the structure does

not require the added cost of a research and development program, or a special testing and

certification program. The ECS also provides the most viable option to accommodate the yet

undetermined PAS requirements in the ISS program. Because the ECS utilizes the same Shuttle

attach points as the USS, the existing GHE and test hardware can be used for the ECS. This

represents a saving of a significant amount of design and analysis work.

37



Cost and schedule

Once again, an attempt was made to estimate the cost and schedule needed for the ECS to

accommodate the ACCESS experiment (Table 8). The total cost to build the ECS for ACCESS

will be approximately $2.2 to $2.6 million depending on the final payload weight and the final

experiment design (broken out as deliverables in Table 7). This cost is based on actual JSC

flight experience.

A certified ECS can be ready for shipment 19 months after the definition of the experiment and

the definition of the experiment-to-ECS interfaces.

Thermal control

Summary

Over its four-year mission, ACCESS will experience the full range of ISS environments

(Appendix G). It must be designed to withstand and function within all of them. The study

below was performed to identify the range of particular thermal effects that ACCESS will

encounter and possible means of dealing with them. Such an assessment of the overall thermal

feasibility of ACCESS is essential due to the temperature sensitivity of its instruments. This

payload has extremely tight thermal requirements that must be considered in both its overall

payload design and its internal detector design.

• Insulation and possibly heat pipes can be used to minimize thermal gradients.

• Total heat rejection can be achieved with reasonably sized radiators.

• A louvered radiator adds mass and complexity, but would reduce required heater power.

• Thermal design within each detector is extremely important to ensure minimum

temperature gradients and adequate heat rejection.

ACCESS thermal configuration

From the three separate baseline ACCESS instruments described in Appendix B (CM or

ZIM, TRD, and calorimeter), a total integrated thermal instrument for the study was defined as

depicted in Figure 22. As was shown in Figures 18-20, the detectors, avionics, thermal control

hardware, and other miscellaneous items will all be supported and attached to the ISS by the

ECS. For purposes of this thermal study, only the detectors were evaluated. Baseline Option 3

dimensions, mass, and power dissipation were used (Table 9 and Appendix E). The temperature

limits arrived at by the Accommodation Study Team PIs are shown in Table 10. Detailed

thermal evaluation of the internal detector structure (such as that described in Appendix B) and

the avionics boxes (such as shown in Figure 19) were not part of this thermal analysis because

these are still undergoing conceptual design.
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Figure 22. Integrated ACCESS instrument (Option 3) for thermal analysis.

Table 9. Dimensions, Power Dissipation, and Mass for Baseline ACCESS Thermal Study

(Option 3)

Subsystem
Dimensions

(m)

CM (ZIM) 2.5 x 2.5 x .5

TRD 2.5 x 2.5 x 1.2

Calorimeter:

Si Matrix
BGO

Remote Electronics:

ZIM
Calorimeter

TOTAL:

1.257 x 1.257 x .55

1.035 x 1.035 x .3

N/A
N/A

Exposed Surface Area

(m 2)

9.25

16.06

2.75

2.31

N/A
N/A

Power Mass

(watt) (kg)

58 360

200 750

38 1518

32 2142

58 N/A

50 N/A

436 14770

39



Table 10. Temperature Limits for Baseline ACCESS Study

Operating Min/Max Min/Max Operating Allowed
Target Operating Survival Temperature Temperature

Subsystem Temperature Temperature Temperature Gradient Variation

(°c) (°c) (°c) (°c) (°c)

CM (ZIM) 5 -5/+20 -30/+30 < 10 N/A

TRD 5 -5/+20" -30/+30" N/A N/A

Calorimeter: <1-2 / orbit

Si Matrix 10 -25/+30 -40/+40 <2 <2-3 / 45 days

BGO 10 - 10/+30 -40/+50 N/A <5 / year

Remote Electronics:

ZIM 20 -30/+45 -40/+70 N/A N/A

Calorimeter 20 -5/+40 -45/+75 N/A N/A

* Assumed value for TRD

ISS thermal environment

The ISS will be at an Assembly Complete configuration by the time ACCESS is launched.

Our geometric thermal model is illustrated in Figure 23 for a static, feathered-array configuration.

At an altitude of roughly 435 km (235 nautical miles), the ISS will orbit the Earth every 93 minutes

with the +Z-axis pointing at Earth and the +X-axis along the velocity vector. The actual ISS

attitude can vary by as much as + 15 ° around the X and Z axes, and +15°/-20 ° around the Y
axis. 35

The natural orbital environment (solar constant, Earth albedo, Earth infrared, or IR) and

local coupling effects due to ISS hardware itself, drive the thermal environment. The solar

constant is the radiation emitted from the Sun that reaches Earth. Earth albedo is the percentage

of the incident sunlight that is backscattered out into space again. Earth IR is the energy re-

emitted from Earth as long-wavelength IR radiation. Table 11 summarizes the nominal natural

environment used for this analysis. Local effects must be calculated using appropriate geometry

and optical properties.

Table 11. ISS Nominal Natural Environment

Solar constant 1367 W/m 2

Earth albedo 27%

Earth IR 241 W/m 2

A large contributor to variations in the ISS thermal environment is the solar beta angle.

Beta angle is defined as the smallest angle between the orbit plane and the solar vector (Figure

24). For any spacecraft, the beta angle at a given time will be governed by launch inclination,

launch date and time, and the time of year. Figure 25 shows a sample of beta-angle progression.
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For the ISS, this angle will change periodically from -75 ° to +75 °. At beta angles greater

than 70 °, parts of the ISS will be in sunlight for the entire orbit.

Solar Vector

- Orbital Plane

i.
V

Figure 24. Beta angle definition.
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Figure 25. Sample beta angle progression with time.

The payload attach sites on both the $3 and P3 trusses are located outboard of the ISS

radiators and inboard of the solar arrays. Both radiators and solar arrays will articulate continu-

ously and will influence the ACCESS thermal environment. Payloads attached next to ACCESS
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could also have a significant effect. At this point it is uncertain what payloads will be located

next to ACCESS and how long they may remain there.

ACCESS will also have to withstand other environments prior to installation on the ISS.

Shuttle Orbiter environments while undocked from the ISS can be controlled by Shuttle attitude.

Once docked, however, ACCESS could remain in the Shuttle payload bay and/or on a temporary

attach site for several days. These ISS operational scenarios also need to be accounted for.

Thermal survey

A detailed survey was performed of possible ISS thermal environments for ACCESS. The

thermal model in Figure 25 which includes the ISS Assembly Complete geometry and a repre-

sentative ACCESS payload, was used to determine the six-directional thermal environment at the

$3 attach site 36. The $3 and P3 locations were assumed to be symmetric. In all, 196 cases cover-

ing beta angles from -75 ° to +75 ° and ISS attitude variation extremes were surveyed. Average

sink temperatures based on various optical properties were used as criteria to identify worst-case

hot and cold environments. These environments were then imposed on a more detailed ACCESS

model to size radiators and heaters. The hot case was used to find the amount of radiator area

necessary to keep the experiment at its desired operating temperature. This configuration was

then exposed to the cold-case environments to find the necessary heater power to maintain the

desired operating and survival temperatures.

Thermal assumptions

ACCESS was evaluated as three independent detectors with properties as defined in Tables

9 and 10. Since their operating and survival temperatures are similar, no heat flow was consid-

ered between detectors. Electronics the baseline study PIs identified as being able to be mounted

apart from the detectors were also evaluated and treated independently (Figure 19 and 20).

The CM (ZIM) and TRD detectors where modeled as single isothermal internal nodes,

connected to external surfaces and radiators. The calorimeter was modeled as two separate

systems, the Si matrix and the BGO crystals. Each of these was also modeled as a single
isothermal node connected to external nodes and a radiator. External surfaces were assumed to

be insulated with 10-layer multilayer insulation (MLI) to minimize gradients. Outer surface

optical properties were assumed to be those of beta cloth. Beginning of life (BOL) optical

properties (_e =0.34/0.92) were used for the cold case while end of life (EOL) (et/E =0.4/0.88)

properties were used for the hot case. Radiators were assumed to have optical properties of Z93

white paint (ot/e = 0.17/0.92). Silver Teflon would provide better radiator properties but, due to

its highly specular nature, it may not be acceptable for use on the ISS. Optical properties for

louvered radiators were adjusted to take into account conduction between blades and radiator,

blocked views to space, and reflections off blades 37. The outer surfaces of the louver blades were

assumed to be black anodized aluminum. A summary of optical properties used in this study is

shown in Table 12.
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Table 12. Assumed Optical Surface Pro Jetties

Surface Solar Absorptivity
(c0

Beta Cloth (BOL) 0.34

Beta Cloth (EOL) 0.40

Z93 White Paint 0.17

Louvered Radiator (open) 0.17

Louvered Radiator (closed) 0.1 *

• Effective values

IR Emissivity
(E)

0.92

0.92

0.92

0.64*

0.1"

Radiators were assumed to be located facing the ISS wake (-X) direction. Other possible

radiator directions are less desirable for various reasons. The nadir (+Z) and outboard (+Y)

directions appear to be too warm, and the ram (+X) and zenith (-Z) sides will probably require

debris shields (Figure 21). Thermal resistance between internal nodes and radiators was neglected

in this study. This is a non-conservative assumption, which must be taken into account for

detailed thermal design.

Thermal results

The hot case was found to occur at a beta angle of -75 °, with the ISS in a -15 ° yaw (Y),

15 ° pitch (P), and 15 ° roll (R) attitude. By imposing this environment on the ACCESS thermal

model, the required radiator area to maintain detectors at their desired operating temperature was

calculated. The cold-case environment (Beta 75 °, YPR of-15°,-20°,15 °) was then imposed on

the model using radiator areas from the hot-case analysis. With detectors powered on, the amount

of additional heater power necessary to maintain the operating temperature was determined.

Heater power necessary to maintain survival temperatures when detectors are not powered was

also found. A summary of these results is shown in Table 13.

Table 13. Required Radiator Area and Heater Power

Radiator Area Operating Heater Survival Heater

Subsystem (m2) Power (W) Power (W)

no louver w/louver no louver w/louver no louver w/louver

CM 0.45 0.75 73 0 53 11

TRD 1.6 2.7 210 0 165 15

Calorimeter:
Si Matrix 0.31 0.54 33 0 8 0
BGO 0.22 0.37 31 0 16 0

Electronics .34 0.55 2 0 30 0

Total 2.92 4.91 347 0 242 26
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Results show that a total-radiator surface area (no louvers, no heaters) is sufficient to reject

436 W in a hot environment. Radiator surface area could be the surface of a detector or a dedicated

radiator. Actual radiator surface area will have to be larger to account for thermal resistance

between heat sources and radiators. Detailed modeling and thermal design can determine this.

Heater power (347 W operating and 242 W survival) is required to maintain detectors at minimum

temperatures. Results indicate that almost no heater power is required if louvers are implemented.

This is due to radiator temperature being high enough to heat detectors. This is unrealistic, and

heaters would probably still be needed to minimize thermal gradients and temperature variation

within detectors. This too would have to be determined by detailed analysis.

The orbital temperature variation seen for all detectors was found to be minimal (<1 °C).

This was expected because of the simplified model nodalization, high mass and relatively small,

insulated surface areas.

Thermal design considerations

Because the thermal environments at the payload attach sites will vary significantly with

changing solar beta angle, the detectors need to be insulated to minimize gradients and orbital

variations. This insulation will protect ACCESS from the external environment, but will also

keep the heat generated by the experiments themselves from dissipating. Radiators then become

necessary to remove the excess heat. Isolating the electronics away from the detectors maxi-
mizes the allowable insulation and minimizes radiator and heater requirements. Using louvered

radiators reduces the heater power necessary, yet adds complexity to the system. The use of

either a common radiator, or individual radiators per detector, needs to be evaluated and

optimized.

Getting heat from detectors to the radiators could be challenging. Solid conduction paths

(aluminum, copper, etc.) between heat sources and radiators would require that radiators be

located as close to the detector as possible, and could cause a significant increase in mass. Any

250-mil aluminum avionics shielding from trapped electron-proton radiation, however, could

serve as such a conduction path. Heat pipes are a viable low-mass option using a closed two-

phase liquid-flow system to move large amounts of heat from one location to another. The

driving force for moving fluids is capillary action, which is greatly affected by gravity. Ground

testing of non-horizontal heat pipes is therefore a major concern. Heat pipes should also be

considered for minimizing gradients within ACCESS detectors and in the radiators themselves.

ACCESS avionics & power

Avionics is an acronym for "aviation electronics" which has also come to be all-encompassing,

meaning aerospace electronics. Avionics necessarily requires distributed electrical power. For

the ACCESS baseline study, it was determined that a central avionics and power box was

necessary to manage the ISS accommodation resources (power and data) provided in the PAS

UMA interface shown in Figure 12 and indicated schematically in Figure 26.
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Figure 26. Functional ACCESS avionics, data, and power overview.

These PAS resources (Figure 26) are distributed to the three instruments in the functional

fashion shown and the two-way data links are established. A detail of the central avionics box is

given in Figure 27. When necessary, its functions include central microcomputer processing,

data storage, power conversion, central timing, synchronization, triggering, telemetry data and

command interface, heater control, and general housekeeping. PAS power and data interfaces

include a utility power feed for pass-through to the attached payload via the UMA. Both the

electrical and the C&DH interface between the PAS UMA and the ACCESS payload are handled

by means of the avionics & power box (Figure 26 and 27). Trigger control can be run along the
electrical harness.

Electrical po wer

The ISS provides 113-124 VDC utility accommodation power as measured at the PAS

UMA. Power quality is specified in the ISS External Payload Interface Definition Document.

As shown in Figure 27, this electrical power is either fed through directly or undergoes a power

conversion in the power module. At the time of writing this report, the Accommodation Study

Team PIs are unclear as to whether they want converted power, or they want to do their own

conversion, or both. The power is then routed via an electrical harness (Figure 26) to the respective

instrument or instruments. An optional 28 VDC STS electrical power interface is also shown in

order to alleviate STS accommodation incompatibilities discussed in Appendix H.2. A 28 and 120

VDC heater control system could then operate off of both STS and ISS power accommodations
without additional conversion.
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Figure 27. ACCESS avionics & power box concept.

Present estimates indicate that the ACCESS avionics will require 436 W for normal opera-

tions. An additional 200-400 W may be required to maintain the proper operating temperature.

When the electronics are off, 200-400 W of keep-alive power appear to be required, depending

upon the final thermal control system design.

Data interfaces

In addition to the power interface, there are potentially three command and data interfaces

between the ACCESS payload and the ISS: a fiber-optic high-rate forward link (uplink), a fiber-

optic high-rate return link (downlink), and a MIL-STD-1553B data bus for both forward and

return low-rate data. The high-rate fiber-optic forward link will not be addressed here because

there is no obvious use for it on ACCESS and the ISS Ku-band forward link has not been defined

at this time. (The medium-rate link [E-net] is not available to external payloads.) Therefore, the

interfaces of concern in the avionics & power box concept of Figure 27 are DC power, the 1553

data bus, and the high-rate return link.

47



Command, control, and monitoring

Figure 28 is a simplified block diagram of the entire ISS payload C&DH system. Figure 29

illustrates the portion of the ISS C&DH system that basically supports ACCESS. Connections to

other payloads are not shown.
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Figure 28. ISS C&DH system, payload data subsystem summary.

There are two ISS payload MDMs. MDM 2 is a backup and is brought on line manually in

the event that MDM 1 fails. Unlike the MDMs, the two automated payload switches (APSs) are

used simultaneously.

The active payload MDM obtains low-rate data via the 1553 data bus at a maximum rate of

20 kilobits per second (kbps). In the unlikely event that there is any ACCESS data associated

with crew or vehicle safety, this particular data will be routed to the ground via the command and

control MDMs (C&C MDMs) and the S-Band telemetry system. All the ACCESS data acquired

via the 1553 data bus will be combined with the rest of the 1553 data acquired by the payload

MDM from other payloads and will be transmitted to an APS via fiber. Operationally, the active

payload MDM should always be switched to one of the eight APS output lines.

High-rate telemetry is sent directly from ACCESS on the fiber-optic interface to the APS

shown in Figure 29. As currently planned, only two of the payload direct links to the APS will be

switched to the communications outage recorder (COR) and Ku-band telemetry system at any one

time. The return-link rate allocated to the APS output at this time is 43 megabits per second (Mbps).
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Figure 29. ACCESS/ISS C&DH interfaces (simplified) in Figure 27.

The HCOR, which is the operational version of the COR, will have the capability to store 220 Gbits

of data. Because of communications outage and the fact that multiple payloads will be competing

for resources on the APS output channels, as much data storage as practical should be provided

within the ACCESS payload (Figure 27). Multiple playback rates will be required.
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r

High Rate Frame

Mux (HRM)

To S-Band

Forward and Return

Links

To Ku-Band

Telemetry

Figure 30. Alternate ACCESS/ISS C&DH interfaces (simplified) in Figure 27.

An alternate high-rate telemetry connection is illustrated in Figure 30. The high-rate data is

passed via the APS to equipment in one of the pressurized modules where it can be recorded for

deferred playback or on media that the crew can return to the ground. The advantage of this
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approach is that the design options are not frozen-in years prior to launch. Up-to-date recording

equipment can be used, and even upgraded as advancing technology permits, by astronauts in
their shirtsleeve environment.
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Figure 31. Typical APS connectivity.

The disadvantage of such an approach is that pressurized module accommodations will be

required as well as another APS connection. Figure 31 indicates a typical APS connection.

Ground commands are sent through the ISS S-band system and are implemented using the

1553 data bus interface (Figures 27, 28, and 29). Command words are 64 words long (including

11 words of overhead). Eight commands per second are available for all payloads combined.

Crew interfaces

The ISS flight crews are intimately involved in all ISS payloads. Table 14 clarifies this.

Table 14. ISS Flight Crew Interfaces

• From the ISS cupola, the crew will be manually involved in the remote, robotic

attachment of an ACCESS payload at the PAS.

• The crew has a C&DH interface.

• The crew has a failure mode function for all payloads.

• The crew will probably be in physical contact with the payload at the PAS.

• The payload cannot jeopardize the safety of the crew.

An ISS-issued laptop computer connected to the payload MDM 1553 data bus (Figures 22,

23, and 24) as a portable computer system (PCS) provides crew C&DH interface capability for a

limited amount of data display and command.
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Environmental issues

ISS environmental issues that impact the ACCESS payload are presented in Appendix G.

Some are simple and straightforward, while others are far-reaching and significant. Strategy

consists of control plans and mitigation plans. Only three examples will be discussed here.

Additional environmental issues, safety reviews, and control procedures that impact ACCESS

design, development, and operations are deferred to Appendix G.

Control plans (electromagnetic interference, or EMI, example)

EMI

A straightforward example is EMI, which will be a fundamental consideration during the

detailed design and development phase (Implementation Phase: design, development, test, and evalua-

tion, or DDT&E) of ACCESS. An SSP EMI control plan (EMICP, SSP 57010 cited in Appendix D

of this study report) outlines the process required by the ISS community to ensure electromagnetic

compatibility (EMC) between ACCESS and other ISS systems as well as other ISS payloads.

Hazard mitigation plans

An example of a far-reaching consequence of the on-orbit LEO environment is the hazard

to payload instrumentation and avionics represented by particle radiation. Sources include the

Earth's trapped radiation belts, the Sun, and the Galaxy (Figures 32 and 33). For this circumstance
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Figure 32. Proton flux in LEO as a function of energy 4°.

there is no control plan. Rather, risk mitigation rests in payload design, operations procedure,

shielding strategy, and an existing JSC radiation-level measurement plan.
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Radiation hazards

For the purpose of this ACCESS Accommodation Study, a radiation hazard analysis for

payload avionics and electronic components was conducted based upon JSC computer simulation

codes for the Earth's trapped radiation belts (Appendix G, Ionizing Radiation). By definition,

this study was conducted for an ISS altitude of 500 km, which is a programmatic requirement.

That altitude is a firm ISS hardware-imposed limit arising from the fact that the Russian Soyuz

cannot go above 470-480 km and still de-orbit. Therefore, the trapped electron and proton fluxes

(Figures G.8-G. 11) along with the shielding curves (Figures G. 12-G. 14) can be used directly as a

worst-case data analysis for a 2-_ margin of allowable dose. The SSP requirement for ISS

altitude will always place it lower than those figures, thereby removing it further from the

trapped radiation belts, which reduces the hazard.

Phase 1 of the ISS program was the joint U.S.-Russian Mir program orbiting at an altitude

similar to the ISS (Mir: 51.65 degree @ ~ 381 km). One objective of Phase 1 was to define the

radiation-level environment as a hazard. JSC's Space Radiation and Analysis Group (SRAG) did

this; the data are available 38, and the same SRAG detectors are slated for the ISS (the TEPC and

CPDS--see Acronyms, Appendix J). The CPDS is already on board the ISS (second-element

launch, Flight 2A in Appendix C). It has a five-year life-cycle, and the ACCESS Accommodation

Study Team has discussed how CPDS-II might be modified to complement and support ACCESS

requirements when CPDS is upgraded in 2003.

Having introduced the ISS radiation hazard and the JSC SRAG measurement plan, how

should ACCESS cope with the problem of a cosmic ray that penetrates payload electronics as

illustrated in Figure 34?

The subject is well understood and has been thoroughly discussed 39. We now introduce the

concept of a hazard mitigation plan (HMP). These are diverse, and the topic has a rich heritage.

O'Neill has pointed OUt 4° that two philosophies have emerged over the past 30 years for radiation

HMPs: (1) The chip-by-chip method using a preferred parts list (PPL); and (2) The system-level
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approach using commercial off-the-shelf (COTS) equipment from an approved parts list (APL).

Both methods have been used successfully in spaceflight. These are contrasted in Table 15.
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Figure 34. Radiation hardening and avionics failure mitigation.

Table 15. Contrast Between Radiation HMPs

Approved Parts Strategy

• Use rad-hard approved parts

• System-level testing (APL)

• Test "whole thing"

• No latchups to LET ~ 15 years

• MTBF* - 10 years

• Practical, latest technology

• Fallacy: Proton-beam only
*mean time between failures

Preferred Parts Strategy

• Use rad-hard preferred parts

• Chip-by-chip certification (PPL)

• Design is NASA-unique

• No latchups to LET > 35

• MTBF - ? ? years

• Expensive, frozen-in

• Fallacy: Non-existent parts

Radiation hardening (for rad-hard parts) is an avionics design strategy aimed at minimizing

single-event phenomena (utilizing epitaxial layers, complementary metal oxide semiconductor

silicon-on-sapphire insulator, dielectric isolation, guard rings, cross-coupled resistors, oxide

composition and thickness assessment, and voltage derating).

The PPL method is well-known, being the chip-by-chip rad-hard certification procedure

meeting military standards to some high LET (e.g., LET - 36). It was the NASA culture until

approximately three years ago. It results in virtually 100% assurance of mitigation. However, it

is cost-prohibitive; and it freezes-in the design early in the design, development, test, and certifi-

cation (DDT&C) to such an extent that the avionics parts may no longer exist when the payload

gets to its implementation phase or DDT&E (see Note 1). This happens in a robust technology

when industry has stopped producing the parts commercially in lieu of better products.
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TheAPL methodis newer,havingappearedin theISSeraaspart of the"faster,smaller,
cheaper"method.Basically,oneplaces"thewholething" (e.g.,avionicsbox,PC,printer,etc.)in
a 200 MeV protonbeam. It isan integrated,system-levelbeamtestperformedwith theentire
electronicssystemoperating41.It emulatesanLET of 15MeV-cm2/mg,catchingall failure
modeswithMTBF < 10 years. It also provides data for predicting system-level on-orbit failure
rates.

The advantages of the two DDT&C approaches are compared in Table 16. In both strategies,

all designs are assumed to be "radiation smart": (a) error detection and correction for critical

RAM (random access memory and cache); (b) protected executable code; (c) system redundancy

(self-checking, watchdog timers, etc.); and (d) shielding (optimal). Shielding up to -250 mils as

shown in Figure 35 does help for the trapped-belt radiation. Obviously, when known electrical,

electronic, and electromechanical (EEE) rad-hard components are available and cost-effective,

they can be used in both methods.

Table 16. Comparison of DDT&C Radiation Hazard Mitigation Strategy

System-level COTS

• System-level, high confidence

• Chip-level, undefined

• Flexibility

• COTS

• Test cost - $300/hour

Chip-level, LET-specific

• Chip-level, 100% confidence

• System-level, undefined

• Frozen-in

• Unavailable parts

• Test cost - 1 WYE/chip
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In summary, there is no PPL in the ISS program. There is an APL (at the Boeing Radiation

Effects Laboratory website, with URL links and pointers elsewhere). The current ionizing

radiation requirements are given 4° in Table 17.
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Table 17. Ionizing Radiation Requirements

• Avionics "... shall meet performance and operability requirements while operating

within the natural radiation environments as specified in ... "

• Shuttle

- NSTS 07700 Volume X Books 1 & 2

- Flux vs. LET for 57 degree x 500 km orbit, solar minimum, 100 mil shielding

- SEE (single event effects) only

• Space Station

- SSP 30512 Rev. C

- Flux vs. LET for 51.6 degree x 500 km orbit, solar minimum, 50 mil shielding

or actual shielding

- SEE and Total Dose

The spacecraft avionics requirements in Table 17 are not relegated upon science payloads.

For the ACCESS payload, the Accommodation Study Team recommends a hybrid combination

of the system-level (COTS APL) and chip-level (rad-hard PPL) radiation HMPs. This allows for

the obvious use of known, inexpensive rad-hard circuity components (e.g., rad-hard EEE PROMs

[programmable read-only memory]) when they are COTS----but in the system-level APL method

defined for the ISS program. Rad-hard components are not required, however, if the system can

pass the proton beam test. The method is currently being adopted at JSC for the MARIE-Mars

2001 program 42. It is summarized 1°'4° in Table 18.

Table 18. Recommended Radiation HMP for ACCESS

• Apply SSP 30512, Rev. C.

- _; 250 mils shielding

- Appendix G, Figures G.9 and G.IO

• Adopt system-level performance requirements, not "rad-hardness" of components.

- Allowflexibility.

- Allow reasonable, quantified risk.

- Allow use of robust modern technology.

• Adopt rad-hard components as an option, when cost-effective and COTS.

• Adopt SEE strategy.

- A little bit of shielding helps, low-energy (- 250 mils Al equivalent)

- Ops work-arounds, high-energy events

- Fail-operational, fail-safe design (multipath circuit design)

The ISS APL can be found at the Boeing Radiation Effects Laboratory website (Appen-

dix K), with links to the ESA database as well as to parts lists at Jet Propulsion Laboratory, the

Electronic Radiation Response Information Center, and the Goddard Space Flight Center (GSFC).
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Micrometeoroid and orbital debris (MMOD) hazards

The MMOD hazard in the ISS environment is particularly relevant to ACCESS because the

baseline TRD instrument (Appendix B.3) contains a pressurized tank system. Until such a TRD

conceptual design is brought into compliance with the NSTS and SSP safety review process,

ACCESS will not fly on STS or the ISS.

Details of the subject hazard models are defined in SSP 030425, Rev. B, Section 8, and the
debris model is available elsewhere 43. An initial risk assessment for ACCESS 44 was the basis for

the debris shields depicted in Figure 21. These are referred to as 'Whipple' shields or bumpers'

(cf. photos in Johnson43). For instrumentation with a field of view (FOV), these function much

like an automobile windshield on a freeway, which keeps flying particles from entering the eyes

of the driver. Some 200 ISS shielding types are available (Whipple, multi-shock, mesh double

bumper, stuffed Whipple, etc.) using ceramic cloth, metallic mesh, fabric, toughened insulation

blankets, and aluminum. The toughening enhancement adds Nextel to the thermal blanket,

between the beta cloth and the MLI.

The MMOD analysis process is summarized in Figure 36. It includes actual hypervelocity

impact testing in JSC's Hypervelocity Impact Facility (HITF).

BUMPER
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Figure 36. MMOD analysis process 44.

ACCESS pressurized gas system (TRD)

The toughening procedure mentioned above was applied to the flight qualification of

Rocketdyne's plasma contactor unit (PCU) tank system 45-47in the ISS electrical power system.

The net result is functionally illustrated in Figure 37, showing the tank, Kevlar fabric, Nextel

fabric, aluminum foil, and aluminum alloy shield. The spherical tank has been transformed into

a system. It becomes a box (illustrated previously in Figures 19 and 20). Configuration details

of the PCU box system are given in Appendix I.
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Figure 37. PCU MMOD design 44

The ACCESS Accommodation Study Team recommends adopting the PCU tank system for

the TRD instrument's use. The rationale is simply that the Boeing-Rocketdyne PCU tank system

design has already gone through an ISS flight qualification procedure (Figure 36) to protect the

high-pressure Xe tank on ISS, with a PCU-shielding probability-of-no-penetration (PNP) of

0.9988 over 10 years (exceeding the ISS safety requirement of PNP = 0.9955 over 10 years).

Also, crew training for topping off or refilling the gas supply is essentially the same as for the

ISS electrical power system. That results in another cost benefit.

Utilization of the PCU tank system for ACCESS constitutes a re-flight of the Rocketdyne

unit and therefore considerably simplifies the safety review process (Table 19 below). Re-flight

hardware usually begins at Phase ]II.

With respect to costs for the PCU system, these are virtually off-the-shelf. The following
estimates in Table 19 have been arrived at 48. The Xe gas costs are appreciable, for the flow tests,

purity tests, acceptance tests, and qualification tests.

Table 19.

• PCU tank system (3flight boxes)

• PCU tank system (3 prototype boxes for tests)

• Xe refills (per fill-up $40+K)

• Xe refills, total

• Total

Rocketdyne PCU Tank Costs

$120K

$90K

$500K

$710K

Robotic interfaces

The robotic interfaces with the ISS are functional and consist of hardware. These are

described in NSTS-21000-IDD-ISS, Sections 13 and 14. Currently, the ISS only has one type of

hardware grapple fixture, called the power and data grapple fixture. The requirements for this

system are not fully defined. They will eventually be specified in SSP 57003. More details on

this system are listed in the Carrier Issues section of this report and in Appendix H.
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Safety

Station-wide safety is the subject and responsibility of NASA's safety review process. All

payloads such as ACCESS that will be integrated into the Space Shuttle at Kennedy Space

Center (KSC) for flight to the ISS must meet the flight and ground safety requirements of the

following documents (Appendix D):

Flight Safety: NSTS 1700.7B; NSTS 1700.7B, ISS Addendum; and NSTS/ISS 18798B

Ground Safe_. : KHB 1700.7B

Flight and Ground Safet3,: NSTS/ISS 13830C

The flight and ground safety processes for payloads are specified in NSTS/ISS 13830C. The

primary safety task is the preparation of payload safety data packages which contain descriptive

information, identified hazard reports, and supporting data. These data packages are submitted to

the NASA Flight and Ground Payload Safety Panels for review and approval at phased meetings.

The maximum number of meetings that could be held is four for flight safety (Phase 0, I, II, and

12I) and four for ground safety (Phase 0, I, II, and HI). These are not to be confused with procure-

ment phases (Note 1). The phases are defined in 13830C, Section 6 and 7. The timing of the

safety reviews is shown in Table 20.

• Phase 0

• Phase I

• Phase H

• Phase III

Table 20. Timing of Payload Safety Reviews

Conceptual design established

Preliminary design established (preliminary design review level)

Final design established (critical design review level)

Most of the testing, analyses, inspections, etc. completed; must be

completed 30 days prior to start of payload activities at the launch

site (usually assumed as delivery at launch site).

The actual number of safety reviews depends upon the ACCESS payload complexity,

technical maturity, hazard potential, and whether it is a re-flight. The latter (re-flights such as the

PCU box in Appendix I) can begin at Phase 17I.

The safety review process includes hazardous payload commands which must be identified

and annotated at the Phase I safety review and incorporated into the Payload Command and Data

Integration Data File (SSP 52000-A04) and the Payload Data Library.

Testing and verification requirements are also specified in NSTS/ISS 13830C. The type

and depth of verification is dependent upon the phase of the safety package and its review.

Examples of some of the verifications are as follows:

• structural verification plan

• structural analyses and tests

• fracture control plan and report

• material assessments and tests for toxicity

• flammability and stress corrosion

• fault tolerance analyses and tests for electrical and mechanical systems
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• battery tests and analyses

• EMI tests and analyses

• sharp edge inspections

• grounding and bonding tests

• sealed container and pressure vessel analyses and tests

• laser or ionizing radiation assessments and tests

The key to a successful payload safety program is prompt and complete submittal of infor-

mation to the Payload Safety Panels via the safety data packages. Examples of the review process

are as follows. Selection of Aluminum 7075-T7351 for the primary payload structural support

material, chosen from accepted mature standards for spaceflight, would contribute to a successful

safety review. The choice of a robust composite material for carrying primary structural loads

that is not in the handbook for spaceflight standards could lead to numerous delays. As secondary

structural load paths, composites may be satisfactory, however. "Failure" in the safety review

process means the item is not approved for the next level of review for lack of spaceflight

readiness. The consequence can be a major impact upon payload program schedules and costs.

Costly redesign and recertification work can be avoided by early identification of potential

hazards and spaceflight readiness, as well as early approval of hazard controls and verification

methods by the Payload Safety Panels. The NASA-JSC Mission Management Office (MMO)

support concept is recognized for its ability to assist payload customers with all aspects of the

flight and ground safety process.

Integration, verification, and test (IV&T)

Under the JSC templates for STS and ISS payload IV&T, the science instrument and the accom-

modation payload support structure (APLSS) finally come together at KSC. Figure 38 describes

this IV&T process. That complete support structure consists of the ECS (or USS) in Figures 13-21

fully integrated with the ancillary avionics (power, data, and communications) in Figures 26-27.

The APLSS is actually an accommodation interface device or a payload interface device,

which provides and maintains all of the accommodations for the payload science customer. This

final integration begins at KSC, continues into the Shuttle payload bay, and is the resource for

interfacing with the PAS and UMA (Figure 12) while on the ISS.

KSC operations

The flowchart in Figure 38 gives the overall flow of events for launch site operations.

Mission management (defined below) will coordinate, plan, and see that all of these events are

carried out. Most of the operations involve coordination between the experiment developers and

the launch site operations personnel. The launch site operations personnel include safety, reli-

ability, quality, operations per se, management, etc. The steps that are shown in the figure are

meant to indicate a general process flow for the payload as it progresses through the launch site

operations and emerges in the Shuttle payload bay. Additional steps may be necessary, and KSC

operations and ground safety personnel must document and review specific procedures and

operational details at that time.
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Figure 38a. Conceptual launch site operations flow chart for an ISS science payload

(modeled from the actual STS-91 mission for the AMS Orbiter).
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Figure 38b. Conceptual launch site operations flow chart for an ISS science payload

(continued).
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Mission management coordinates KSC operations and payload processing requirements

through a series of Ground Operations Working Group (GOWG) meetings at KSC. These GOWG

meetings are conducted throughout the payload development process. Payload processing and

verification requirements are documented in the Payload Launch Site Support Plan and the

Operations and Maintenance Requirements and Specifications Document.

Additional details of KSC operations are illustrated in the DC&I master schedule and KSC

schedule under "ACCESS Conceptual Accommodation Schedule" given below.

ACCESS operations

A post-launch functional test of ACCESS prior to unberthing from the Shuttle payload bay

may be performed. Following deployment at the PAS, one-orbit payload operations would proceed.

The initial phase of ACCESS operations involves experiment activation, commissioning,

and preliminary checkout. This period will last probably 15 to 30 days, during which time the

entire instrument is calibrated by adjusting thresholds and other operational instrument parame-

ters. It probably will involve various forms of self-test. Interfaces between the three detectors

(CM or ZIM, TRD, and CAL) will be verified as well.

ACCESS will then enter routine operations, requiring minimal monitoring and relatively

small daily uplink capacity. What is important will be the downlink of the experiment data.

ACCESS has a relatively low data rate and will perform little onboard processing. Delivery of

the downlinked data (Figure 39 below) to an ACCESS operations and data distribution center

will be necessary for detailed evaluation of the cosmic-ray experiment. This center will also

perform operations and contingency planning in coordination with the ISS operations (ops) team

and ISS schedules or time-lines. There also will be known periods of reduced science data

recovery and ISS communication outage.

Full-scale ACCESS operations will then be carried out. Aside from monitoring cosmic-ray

events and general housekeeping plus commands, an example of ops would be the proximity

operations during Shuttle rendezvous and docking when the ISS solar arrays are feathered and

ACCESS would be placed in a keep-alive mode. Another example would be the topping off or

resupply of the TRD PCU tank system gas.

Failure modes are conditions that arise during mission operations when a spacecraft com-

ponent breaks or malfunctions. The failure could be within the payload, or within the space or

ground segment of the ISS. In either case, they can compromise the science objectives of the

ACCESS experiment. Failure modes and effects analyses (FMEAs) need to be conducted to

anticipate these and preclude as many as possible through a fail-operational design strategy.

However, FMEAs were not a part of the ACCESS Accommodation Study and must be taken up

in a subsequent phase of the program.

Science data interface

The end-to-end ISS payload data flow is illustrated in Figure 39 (MSFC-SPEC-2123B).

This figure shows the functional ground and space segment architecture for ISS payload science

data, involving the White Sands Complex (WSC), JSC's Space Station Control Center, GSFC,

and the Marshall Space Flight Center (MSFC).
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ISS ground segment

MSFC is responsible for the ISS ground segment payload data processing and distribution.

This includes definition, design, development, and operations. To fulfill their responsibility,

MSFC is developing the payload data services system (PDSS) shown in Figure 39. The PDSS is

to be installed in the MSFC Huntsville Operations Support Center (HOSC) to support on-orbit

ISS payload operations.

STATION

VIDEO
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P
SSCC
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Investigator Sites jD[_jSPAYLO A !

UPUNKS

Figure 39. End-to-end ISS payload data flow.

The PDSS in Marshall's HOSC will receive, process, store, and distribute ISS Ku-band data

to the user community. This includes a number of the sites and facilities shown in Figure 39, and

in particular the science investigator sites for ACCESS. The PDSS will interface with the Payload

Operations Integration Center (POIC) to handle, store, and distribute to the ACCESS user com-

munity ground ancillary data, payload health and status data, and ISS core systems data. In

addition, the PDSS will process, store, and distribute the ISS COR data for the payload user

community as part of the Ku-band downlink. Core systems data will be contained in the S-band

stream while payload science data will be in the high rate Ku-band stream.

Onboard architecture (space segment)

The baseline ISS onboard payload architecture is depicted in Figure 40, which is similar to

Figure 28 but focuses upon ISS module geometry. It consists of a central backbone payload
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network comprised of payload command/control, high-rate data, and medium-rate data with

mutiple ISPR-to-ISPR (international standard payload rack) communications media as shown.

This was discussed earlier.

in Appendix J.

Devices attached to these media are indicated, with acronyms defined

U.S Attached

Payloads
(3 Ports)

U.S. Lab

t ...... o • i ...... i ...... 6..... .o • • ._5.57.BCo_.tro,.8.o;......

I I I I

_- ...... o--o .........

u.s A_ached

Payloads
(3 Starboard)

1553B Payload LocalBus
1553B Control Bus

JEM 1553B Local Bus
Medium Rate Data Link

Payload interconnecting Cable

APM J PortableComputer

- l

NODE 2

JEM

Portable /0 ........ • ...... /

Computer_(1 )

i

Figure 40. ISS onboard payload architecture.

Functional command flow

The C&C MDM provides the top-level control functions for the ISS. The Payload MDMs

provide the primary interface with the system C&C MDMs for resource allocation and reception

of ground-based commands and data for payloads such as ACCESS attached to its 1553B local

buses. Payload MDM commanding, then, can be visualized as a four-step process in Figure 41

based upon the architecture in Figure 40. A command packet originates from the ground (WSC)

or the crew PCS. Otherwise, it is a time-lined one. It then is routed to the appropriate Payload

MDM, which directs it to the target payload on its local ISPR bus. For ACCESS, the packet

would arrive on one of the three starboard ports shown in Figure 40.

The basic ISS command processing overview is summarized in Figure 42.
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NASA Mission Management Office

Summary

In order to maximize the potential for successful and timely deployment of the ACCESS

payload on the ISS, the Accommodation Study Team recommends that the same single-interface

managerial structure used effectively in the AMS program should be utilized for management of

the analytical, physical, and operational interfaces required for ACCESS. Thus, it recommends
that a NASA MMO, or its functional equivalent, be established for the ACCESS program and

serve as interface or liaison to the Shuttle and ISS Program Offices. This would include overall

mission integration for the ACCESS Program Office and ACCESS payload community. The

MMO could be established at any NASA center, although it is presently at JSC. As a concept,

JSC experience with STS and ISS payloads has shown that the MMO strategy is the most cost-

effective approach for mission integration and accommodation.

Mission management functional tasks are given in Table 21.

Table 21. Mission Management Functional Tasks

• Management interface to Shuttle and ISS programs

• Payload consultation for ACCESS payload community

• Payload safety representative toflight and ground safe_.' panels

• Negotiation of payload integration requirements

• Payload physical integration management and mechanical interface

development

• Payload training coordination

• Payloadflight operation and mission support coordination

• Postflight support

The Mission Manager provides the planning for the overall integration of the payload into the

Space Shuttle and the ISS. This involves negotiating and documenting all payload interfaces with

the Space Shuttle and ISS Program Offices. Typical interfaces include structural (or mechanical)

design, thermal design, electrical power, command and data, and robotic and crew interfaces.

Since the JSC MMO will have completed all these tasks for AMS as the first ISS attached

payload, this valuable experience should lead to significant savings in time and cost to NASA

and the ACCESS program.

The Mission Manager negotiates payload compliance with respect to Shuttle and ISS

requirements. This effort involves in-depth knowledge of the applicable program requirements

and their current interpretations to negotiate payload compliance successfully. ACCESS compli-

ance with these requirements will be tracked in the Certification of Flight Readiness process, the

flight and ground safety process, and the program-specific ICD waiver process. The Mission

Manager provides the coordination between the ACCESS science instrument developers and the

Shuttle and ISS Programs to complete this effort.
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The Mission Manager provides assistance and advice to the ACCESS payload community

related to payload mission success. This is based upon previous payload experience and interaction

with Shuttle and ISS Program personnel. Included in the mission success task is the verification

of payload compatibility with all Shuttle and ISS environmental conditions and requirements,

including thermal, EMI, power quality, radiation, and orbital debris.

Management interface

The Mission Manager serves as a single-point-of-contact representing the ACCESS pay-

load to the Shuttle and ISS Programs, and to the various support organizations involved in the

integration, certification, testing, safety and operations of the payload. This effort involves

representing the payload organization at various Shuttle and ISS Program meetings and interfac-

ing with various program and support personnel to define, document, negotiate, and implement

all payload requirements from the Shuttle or ISS Programs. The Mission Manager also assists

the ACCESS payload community in understanding the capabilities and limitations of the Shuttle

and ISS accommodations. The Mission Manager works with the Shuttle and ISS Programs to

develop a program schedule of milestones and deliverables. The Mission Manager is responsible

for providing guidance to the ACCESS payload community in meeting the required milestones

and deliverables per the agreed-to program schedule and for providing status of progress as
needed.

Payload consultation

The Mission Manager provides early design and operations consultation and guidance to the

ACCESS payload community to ensure compatibility between the payload design and operations

and the capabilities and requirements of the Shuttle and the ISS. This is necessary to eliminate or

minimize the potential for physical, functional, or safety incompatibilities between the payload

and the Shuttle or the ISS. This function involves providing detailed engineering design, testing,

modeling, or analysis to assist the payload in verifying compatibility. The Mission Manager also

assists the ACCESS community in configuring and packaging the payload into a cargo element

capable of being analytically, physically, and operationally integrated into the Shuttle and ISS

systems.

Payload safety

The Mission Manager negotiates payload compliance with flight and ground safety require-

ments. This effort begins early in the payload design process to incorporate all applicable safety

requirements before the design is complete to ensure significant redesign effort and cost are not

incurred. The MMO provides guidance to the ACCESS project to identify, and eliminate or

control hazards or potential hazards associated with the ACCESS payload. The MMO assumes

the lead role in developing all applicable flight and ground safety compliance documentation. It

would be the payload representative to the Shuttle, ISS, and KSC Safety Review Panels.
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Payload integration requirements development

The Mission Manager provides guidance to the payload developers in the development,

documentation, and negotiation of payload requirements to be levied by the Shuttle and ISS

Programs. This process involves meetings, telecons, and correspondence with Shuttle and ISS

Program personnel and associated technical experts. During this process, the Mission Manager

would act as the ACCESS payload representative to ensure that all payload requirements are met.

Payload physical integration

The Mission Manager oversees the physical integration of the ACCESS payload and all

mission-particular integration and interface equipment into the Space Shuttle and onto the ISS.

The Mission Manager would not perform the function of experiment integrator. Rather, the

experiment integrator would be responsible to the ACCESS Program Office for the integration of

the various subassemblies of ACCESS into an integrated payload. The integrated payload would

include the CM, the TRD, the calorimeter, and the power, data thermal control, and gas resupply

systems required for supporting the three main components. The MMO would be involved in

designing, building, testing, and certifying unique flight hardware and GSE or GHE required to

integrate the payload into the Space Shuttle and the ISS. This hardware includes payload thermal

protection and control systems, the ECS, and power, command and data interfaces between the

ACCESS payload and the Space Shuttle or the ISS.

The Mission Manager serves as the payload interface to KSC personnel for all launch site

support and operations. This function would involve coordinating the definition, documentation,

and implementation of all payload launch site testing, integration, and launch operations. This

effort would be completed through standard payload integration plan (PIP), PIP Annex, PIA, and

PIA Annex documentation and through various GOWG meetings, as payload launch site

requirements and operations are developed.

Payload training coordination

The Mission Manager is responsible for training the astronaut crew and ground support

personnel on the ACCESS payload. A training plan will be developed and implemented.

ACCESS ground support personnel and the NASA flight crew will be trained on the real-time

operation of the payload via simulations, both joint integrated simulations with the entire flight
control team and internal stand-alone ACCESS simulations.

Payload flight operations and mission support

The Mission Manager assists the ACCESS payload community in the development,

documentation, and verification of all payload nominal, contingency, and in-flight-maintenance

procedures. The procedures are documented in the Shuttle and ISS Flight Data Files for use by

the Shuttle and ISS flight crews. The responsible astronauts would exercise these procedures in

crew training sessions and joint integrated simulations (JISs). The Mission Manager would

coordinate and support all crew training sessions and applicable JISs.

The Mission Manager also assists the ACCESS payload community in the setup of the

ACCESS Payload Operations Control Center (POCC) to support real-time operations. The
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Mission Manager would work with the ACCESS payload community and the NASA program

offices to arrange provision of required Shuttle and ISS data to the ACCESS POCC. The

Mission Manager in the JSC Mission Control Center (MCC) would provide real-time mission

support of the ACCESS delivery flight to the ISS through deployment, installation, checkout, and

operation verification. The Mission Manager could also provide real-time support for the ISS

on-orbit operations for ACCESS as required. Support for the ACCESS de-integration operations

from the ISS and the return flight on the Shuttle would also be provided in the JSC MCC.

Payload postflight support

The Mission Manager provides postflight analysis and de-integration support for the

ACCESS payload. This support includes KSC operations support for postflight de-integration of

the ACCESS payload and interface hardware from the Shuttle and de-integration of and data

retrieval from the payload. The Mission Manager also assists the payload developers in shipping

payload hardware and support equipment from KSC to the payload developers' home
institutional facilities.

ACCESS accommodation schedule template

The attached ACCESS program schedule template that follows is a preliminary draft of a

top-level or major milestone schedule for the DC&I of the ACCESS payload. This schedule

assumes that the ACCESS payload experiment integrator has already essentially completed the

integration of the three major components (Appendix B) into a complete single payload, including

data and power interfaces between components. At that point the MMO support would design

the interfaces and integration hardware required to mate the payload with the Space Shuttle and

the ISS. (See Integration, Verification, and Test, Figure 38.) This schedule assumes a Shuttle

launch to the ISS in late 2006. The MMO would require a 36-month schedule to complete all of

the DC&I activities associated with the ACCESS payload. The MMO can prepare a detailed

schedule of all activities as the project progresses and the program requirements are better

defined (Implementation Phase, DDT&E). Additional schedules will be required to address

specifics of KSC preflight ground operations, real-time mission support, the Shuttle retrieval

flight, and KSC post-landing operations.
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ACCESS Conceptual Accommodation Schedule

Overview

JSC's successful flight from launch through landing of the AMS precursor mission (STS-

91) in June 1998 will provide the schedule templates for the ACCESS Accommodation Study

baseline. The assumption is that this process will be repeated for the ACCESS payload. These

templates are actuals, describing in detail the specific process involved in the JSC DC&I of the

recent AMS payload targeted as the first major ISS science payload following Assembly

Complete.

For the purposes of the ACCESS Accommodation Study, an October 1, 2006, launch is

baselined. This date derives from the original AMS schedule for a three-year stay at Site $3 UI,

with a one-year extension in view of discussions that the AMS might remain longer for additional

data collection. The templates are generic and can be readily shifted. For example, this could be

an October 1, 2005, ACCESS launch date if AMS is retrieved in three years as originally

planned. Another example could be a shift of the entire ISS schedule, or an ACCESS launch

prior to AMS retrieval.

The schedule templates fall into three categories. They follow on the next 12 pages.

36-month schedule

Under a baseline assumption that the science instrument has been defined 8 and can keep

pace with JSC DC&I master schedules, ACCESS can be launched in 36 months. Save for the

science instrument costs being defined under the instrument study 8, this can be accomplished at

the cost given in the "Estimated Costs" section, which follows in this report.

The four-page 36-month DC&I template which follows consists of a work breakdown

structure (WBS) containing 42 elements. They range from design and safety reviews (WBS 1-8)

to mission integration plan (WBS 9-11, 15-17), and ICD (WBS 12-14) definition along with

program reviews (WBS 18). These are followed by the structural test article (WBS 19, 28-29),

the payload support carrier and interface avionics design, fabrication, and test (WBS 20-22, 25-

27, 30-31), delivery (WBS 32), and reporting (WBS 33). Then there are simulations (WBS 34-

35), thermal blanket design (WBS 36), KSC testing and launch installation (WBS 37-40),

interface verification test (IVT, WBS 41), and launch (WBS 42). Subsequent to launch is the

single-page Mission Support Master Schedule.

60-month schedule

For reference, a 60-month template (L-59) appears in the AMS schedule below.
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AMS templates

The AMS templates fall into two categories, providing explicit details:

• The DC&I master schedule (STS-91 through ISS launch) is first, comprising the first

three subsequent pages.

• The KSC schedule follows, representing the "off-line" and "on-line" integration there.

These comprise the second set of subsequent, three-page totals. "Off-line" (see Appen-

dix I) means the payload has been delivered to KSC but has not yet been turned over to

NASA. "On-line" means the payload is at KSC and has been turned over to NASA.

DC&I master schedule

The three-page DC&I master schedule template reflects the actual end-to-end JSC turnkey

process involved in the design and integration of a certified payload. The example shown was

the AMS illustrated in Figure 13. This STS-91 launch, originally set for May 29, 1998, actually

occurred on June 2, 1998, aboard Shuttle Orbiter "Discovery" (OV- 103) following a brief KSC

delay unrelated to the payload. As one can see, the template is less than 36 months (L-34).

The schedule illustrates how the science instrument and the accommodation support

structure each emerge, and then converge upon KSC for final integration as a consolidated

payload at the launch site. Final integration occurs along the conceptual lines of Figure 38.

The KSC schedule for off-line and on-line activities shown at the bottom of the master

schedule is defined further in the KSC schedule.

Off-line KSC schedule

The off-line KSC schedule consists of a Schedule A and a Schedule B. Schedule A covers

the period from science instrument delivery to turnover to JSC at KSC. Schedule B covers the

subsequent period through turnover of the science instrument and the accommodation support

structure to KSC at the Multi-Payload Processing Facility (MPPF). At the completion of the off-

line KSC schedule, an integrated ACCESS payload exists.

On-line KSC schedule

The on-line KSC schedule carries the newly integrated ACCESS payload from completion

of off-line processing to the launch pad. This is followed by installation at the launch pad,

followed by Shuttle Orbiter IVT and end-to-end testing on the launch pad. At this point, the

ACCESS payload is ready for launch.
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Estimated Costs

Estimated mission management costs

The estimated costs to NASA for the mission management accommodation function are

now presented. These include the design, fabrication, and certification of the ECS, and the

mechanical and functional integration of the ECS with the ACCESS science components.

A summary of the mission management cost estimate is provided in Table 22, which follows in

5 parts on the five subsequent pages (pp. 86-90). The cost estimate is presented there in detail,

along with the assumptions upon which the costs were determined. Phase 1 for the ACCESS

Accommodation Study is complete with this report. The phasing adopts NASA's re-definition of

phased procurement (Procurement Notice [PN] 97-19, our Note 1).

• Table 22 Cost by fiscal year
• Table 22a Phase 1 Phase A/B

• Table 22b Phase 2 Phase C/D

• Table 22c Phase 3 Phase E

• Table 22c Phase 4 Phase E

• Table 22d Phase 5 Retrieval

Formulation (this report)

Implementation

Deployment to ISS

On-orbit mission operations and data analysis (MO&DA)

Post-flight retrieval

This estimate does not include the costs to carry out the following, which are assumed to be

functions that will be performed by GSFC 8 and funded separately.

• DDT&E of the ACCESS science instrument.

• Electrical and avionics integration.

• Thermal design, analysis, and hardware development.

• Systems engineering and hardware development to integrate the science components of

ACCESS into an operational instrument.

The costs that follow are based upon the known, actual support costs for the AMS payload

that JSC is currently responsible for. The ECS costs (Tables 4-8) are included.

The total mission management cost for the duration of the entire ACCESS program in real-

year (RY) dollars is $9.455M.

Ancillary costs

The ACCESS Accommodation Study Team determined that the Rocketdyne PCU box was

an acceptable alternative for the TRD gas tank supply. An estimated total cost of that portion for

the instrument definition team 8 has been determined 48. Cost details are given in Table 19. The

total TRD PCU tank system cost is estimated to be $710K.
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Table 22. ACCESS Mission Management Costs by Fiscal Year ($K)

ACTIVITIES

Phase 2 - Experiment Develop-

ment and Integration Support

Phase 3 - Deploy to ISS Mission

Phase 4 - On-Orbit ISS Support

Phase 5 - ACCE,SS Retrieval Mission

FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FYll Total

224 308 275 239 1,046

1,675 2,658 1,818 321 6,472

303 3171 328 341 89 1,378

241 318 559

224 1,983 2,933 2,057 624 317 328 582 407 9,455

Costs are escalated by 3% per annum, in RY dollars,

Basis of the JSC Science Payloads Management Division (JSC-SM) estimate for ACCESS payload

development

• GSFC performs DDT&E for the ACCESS science instrument.

• JSC performs DDT&E for ACCESS accommodations.

• JSC-SM mentors the ACCESS PIs and the instrument developers on ISS, SSP, and KSC

requirements, processes, and procedures.

• Phase 1 - Accommodation Study (this report); Phase 1 continues for the science instrument 8.

• Phase 2 - ACCESS experiment development and integration support continues.

• Phase 3 - Deployment to ISS mission; ACCESS uses an ECS on STS-TBD in October 2006.

• Phase 4 - On-orbit ISS MO&DA support; ACCESS remains on the ISS for 4 years of continuous

operations.

• Phase 5 - ACCESS retrieval mission; ACCESS will be retrieved on STS-TBD in October 2010.

• GSFC performs electrical and avionics integration, thermal design, analysis, integration, and systems

engineering for the ACCESS instrument.

• JSC performs mechanical design, fabrication, testing, analysis, and integration for the ECS.

• JSC-SM documents compatibility and negotiates compliance with ACCESS, ISS and SSP

requirements.

• JSC-SM designs, manufactures, tests, and certifies mission-peculiar equipment (MPE), unique POCC

equipment, GSE, GHE, STE, and mock-ups needed to adapt the experiment hardware to the Shuttle
and the ISS.

• JSC-SM develops structural math models and completes structural, stress, fracture dynamics,

thermal, EMI/EMC and material analyses and reports for the integrated payload.

• GSFC develops structural math models and completes structural, stress, fracture dynamics, thermal,

EMI/EMC and material analyses and reports for the ACCESS experiment hardware.

• JSC-SM completes flight and ground safety and reliability analyses and reports for the integrated

payload.

• JSC-SM develops inputs for the PIP, PIP Annexes, PIA, and PIA Annexes; supports KSC integration

activities; and provides on-orbit mission operations from the POCC and customer support room

(CSR).

• JSC-SM supports flight crew, POCC, and CSR training and simulations.

• JSC-SM supports postmission de-integration and hardware recovery, facilitates mission data

annotation and distribution, and develops final mission reports for all phases.

• The estimate excludes costs for ISS, SSP, KSC, and other operation, test, and facility costs.

• This estimate includes JSC facility costs for ECS structural verification testing.

• The estimate includes a 10% contingency.
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Table 22a. Phase 2 - Accommodation Development and Integration Support ($K)

ACTIVITIES FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FYll Total

1.0 Mission Management 74 100 90 75 339

2.0 Integration 35 45 40 38 158

3.0 Engineering Analysis 80 110 100 85 375

4.0 Operations 15 25 20 19 79

5.0 Contingency 20 28 25 22 95

Total Phase 2 Costs 224 308

Costs arcescalated by 3%per annum,in RY dollars.

275 239 0 0 0 0 0 1,046

Basis of the JSC-SM estimate for Phase 2--accommodation development and integration support

• JSC-SM mentors the ACCESS PIs and the instrument developers on ISS, SSP, and KSC

requirements, processes, and procedures.

• GSFC performs electrical and avionics integration, thermal design, analysis, integration, and systems

engineering for the experiment.

• JSC performs mechanical design, fabrication, testing, analysis, and integration for the ECS.

• JSC-SM supports the experimenter's programmatic reviews and meetings.

• JSC-SM documents compatibility and negotiates compliance with ACCESS, ISS, and SSP

requirements.

• JSC-SM develops structural math models and completes structural, stress, fracture dynamics,

thermal, EMI/EMC and material analyses and reports for the integrated payload.

• GSFC develops structural math models and completes structural, stress, fracture dynamics, thermal,

EMI/EMC and material analyses and reports for the ACCESS experiment hardware.

• JSC-SM completes safety and reliability analyses and reports for the integrated payload.

• JSC-SM develops experiment operations scenarios, timelines, and analyses.

• JSC-SM assists and reviews the experiment hardware design, manufacturer, and test.

• The estimate excludes costs for ISS, SSP, KSC, and other operations, tests, and facilities.

• This estimate includes JSC facility costs for ECS structural verification testing.

• The estimate includes a 10% contingency.
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Table 22b. Phase 3 - Deployment to ISS Mission ($K)

ACTIVITIES FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FYll Total

1.0 Mission Management 300 353 400 103 1,156

2.0 Integration 775 1,320 498 78 2,67 i

3.0 Engineering Analysis 200 397 275 19 891

4.0 Operations 248 346 480 92 1,166

5.0 Contingency 152 242 165 29 588

Total Phase 3 Costs 0 1,675 2,658 1,818 321 0 0 0 6,472

Costs are escalated by 3% per annum, in RY dollars.

Basis of the JSC-SM estimate for Phase 3--deployment to ISS mission

• ACCESS flies using an ECS on STS-TBD in October 2006.

• GSFC performs electrical and avionics integration, thermal design, analysis, and integration, and

systems engineering for the ACCESS instrument.

• JSC performs mechanical design, fabrication, testing, analysis, and integration for the ECS.

• JSC-SM mentors the ACCESS PIs and the experiment developments on ISS, SSP, and KSC

requirements, processes, and procedures.

• JSC-SM documents compatibility of the ACCESS experiment hardware design with ISS and SSP

requirements.

• JSC-SM supports payload, SSP, and ISS programmatic reviews and meetings.

• JSC-SM designs, manufactures, test, and certifies mission peculiar equipment, unique POCC

equipment, GSE, GHE, STE, mock-ups, and training units needed to adapt the ACCESS experiment
hardware to the ECS and ISS.

• JSC-SM develops structural math models and competes structural, stress, fracture dynamics, thermal,

EMI/EMC and material analyses and reports for the integrated payload.

• GSFC develops structural math models and completes structural, stress, fracture dynamics, thermal,
EMI/EMC and material analyses and reports for the ACCESS experiment hardware.

• JSC-SM completes flight and ground safety and reliability analyses and reports for the integrated

payload.

• JSC-SM develops inputs for PIA and PIA Annexes; supports KSC integration activities; and provides

on-orbit mission support from the POCC and CSR.

• JSC-SM supports flight crew, POCC, and CSR training and simulations.

• JSC-SM supports EVA contingency crew training.

• JSC-SM develops the final mission report.

• The estimate excludes costs for SSP, KSC, and other operations, testing, and facilities.

• This estimate includes JSC facility costs for structural verification testing.

• The estimate includes a 10% contingency.
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Table 22c. Phase 4 - On-Orbit ISS Support ($K)

ACTIVITIES FY03 FY04 FY05 FY06 FY07 FY{I8 FY09 FY10 FYll Total

1.0 Mission Management 74 77 80 84 21 336

2.0 Integration 0 0 0 0 0 0

3.0 Engineering Analysis 0 0 0 0 0 0

4.0 Operations 201 211 214 224 60 910

5.0 Contingency 28 29 30 33 8 128

Total Phase 4 Costs 0 0 0

Costs are escalated by 3% per annum, in RY dollars.

0 303 317 328 341 89 1378

Basis of the JSC-SM estimate for Phase 4--on-orbit ISS support

• ACCESS remains on ISS for 4 years of continuous operations.

• GSFC performs electrical and avionics integration and systems engineering for the ACCESS
instrument.

• JSC performs mechanical design, fabrication, testing, analysis, and integration for the ECS.

• JSC-SM resolves on-orbit anomalies in real time.

• JSC-SM supports experiment and ISS programmatic reviews and meetings.

• JSC-SM maintains MPE, GSE, GHE, and STE for the retrieval.

• JSC-SM maintains unique POCC equipment.

• JSC-SM facilitates annotation and distribution of mission data and reports.

• The estimate excludes costs for SSP, KSC, and other operations, testing, and facilities.

• The estimate includes a 10% contingency.
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Table22d. Phase5 - ACCESS Retrieval Mission ($K)

ACTIVITIES FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FYll Total

1.0 Mission Management 123 181 304

2.0 Integration 0 0 0

3.0 Engineering Analysis 9 14 23

4.0 Operations 87 94 181

5.0 Contingency 22 29 51

Total Phase 5 Costs 0 0 0 0 0 0

Costs are escalated by 3% per annum, in RY dollars

Basis of the JSC-SM estimate for Phase 5---ACCESS retrieval mission

0 241 318 559

Retrieval will be on STS-TBD in October 2010.

GSFC performs electrical and avionics integration and systems engineering for the ACCESS

instrument.

• JSC performs mechanical design, fabrication, testing, analysis, and integration for the ECS.

• JSC-SM mentors the ACCESS PIs and the instrument developers on ISS, SSP, and KSC

requirements.

• JSC-SM supports payload, SSP, and ISS programmatic reviews and meetings.

• JSC-SM re-certifies mission peculiar equipment, GSE, GHE, mock-ups, and training units needed to

complete the retrieval.

• JSC-SM revises structural math models and completes structural, stress, fracture dynamics, thermal,

EMI/EMC and material analyses and reports for the integrated payload.

• JSC-SM revises flight and ground safety and reliability analyses and reports for the integrated

payload.

• JSC-SM develops inputs for PIA and PIA Annexes; supports KSC integration activities; and provides

on-orbit mission support from the POCC and CSR.

• JSC-SM supports flight crew, POCC, and CSR training and simulations.

• JSC-SM supports EVA contingency crew training.

• JSC-SM supports payload de-integration at KSC and hardware recovery, facilitates data annotation

and distribution, and develops the final mission report.

The estimate excludes costs for SSP, KSC and other JSC operations, test, and facility costs.

The estimate includes a 10% contingency.
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Conclusions and Future Effort

The attached payload sites on the ISS will provide a unique platform for astrophysical

observations of the cosmic rays from our Galaxy and the rest of the Universe, using ACCESS. In

the field of cosmic-ray science, this experimental concept is a natural extension of several of the

goals in NASA's Structure and Evolution of the Universe theme of the Space Science Enterprise 49.

It also represents another step forward in the evolution of our attempts to study the cosmic rays by

taking advantage of improving technology and the advent of a space-based outpost such as the ISS

beyond our atmosphere and in Earth orbit. It goes beyond the well-proven balloon experiments of

short duration and limited capabilities in a natural way, and it takes cosmic-ray science to the

frontier of space where such investigation belongs. Although there is nothing new in such a goal

which has been the objective of scientists in the field since its inception 87 years ago l, bringing

the task to fruition is as important as it ever was.

At the completion of this baseline Accommodation Study and at this juncture in the progress

of cosmic-ray science, the next step appears to be the identification of an ACCESS program

strategy which is modest in cost and far-reaching in its consequences. The basic idea is still as

simple as Victor Hess climbing to the mountaintop: Almost anyone can do it. But can anyone do

it inexpensively? How do we accomplish the goal of a modest ACCESS program cost? As a

preliminary Phase 1 summary, this report has identified an initial estimate of certain portions of

that cost, derived from actual numbers and JSC flight experience for existing Shuttle and ISS

payloads. It is likewise derived from a number of rigorous assumptions, payload expertise, and

qualified study team personnel who have already made original contributions to the design and

development of both the STS and the ISS programs.

If such experience can serve as a paradigm, then what conclusions can we draw to direct

our future effort? Experience is not always a talisman for success. Nevertheless, it does have

merit and the following summary in Table 23 addresses several of the issues that presently face

the ACCESS program.

Table 23. Future Efforts

• Identify a Phase 2 (DDT&E) program architecture.

- Complete definition of the ACCESS science mission.

- Define the end-to-end payload integration concept.

• Identify the NASA Centers that support the architecture.

• Implement the architecture.

• Be consistent with existing STS and ISS architecture.

As was stated in this report, JSC can launch an ACCESS payload in 36 months under its

template at the cost given. However, this is only true if and when the ACCESS science mission

and instrument definition are mature enough to keep pace with that schedule. Such is not the

case at the time of this writing in view of the fact that the ACCESS science definition is still

under study 8. Nevertheless, for a launch in November 2006 the JSC template allows until

November 2003 for the ACCESS science and instrument definition to mature.
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Thesecondaspectof Table23 thatneedsattentionis theproblemof heritage.The lastbullet
pointsout thattheevolutionof NASA's spaceexplorationprogramsinto thecurrentSTSandISS
erais oneof humanspaceflight.It is post-Challenger.It intimatelyis involvedwith human
presenceandthereforehumansafety.Thatmeansmultitudesof a newkind of safetyreview.
Oldernotionswhich derivefrom sciencepayloadsflown onunmannedspacecraftor balloon
flights canproveto beout of dateandveryexpensiveonanISSsciencemission. Sothesepoints
of view needto change.Theguidingprincipleof ISSintegrationstrategyadoptedin the
AccommodationStudyis thatfinal testandverificationhappensat KSCandultimatelyonorbit
in thespacesegment----notthegroundsegmentin ahigh-bayfacility. As longas30-year-old
ideasaboutIV&T still plagueus,anACCESSsciencemissionmayproveto bea veryexpensive
thing. TheKSC integrationconcepthasalreadybeenprovenin NASA testflights. It worksand
presentlyappearsto becost-effective,thorough,andadequatefor ISSsciencemissions. The
questionfor ACCESSthenishowto arriveat asuccessful,cost-effectiveIV&T strategythatis
consistentwith existingSTSandISSarchitecture.

With thesepartingthoughtson futureeffort,we completethebaselineACCESSAccommo-
dationStudy(Phase1). All membersandcontributorsof thebaselinestudyteamlook forwardto
thenextexcitingphasesandfutureeffort (Table23 andNotes1-2)of theACCESSprogram.
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Notes

1) Procurement Notice (PN) 97-19. Government regulations are now silent as to titles, definitions, or how many
phases can be used in phased procurement. PN 97-19 does switch from alphabetic to numeric designations.

The NASA FAR Supplement 1817.7300(b) simply defines "phase acquisition" as "an incremental acquisition

implementation comprised of several distinct phases where the realization of program/project objectives requires

a planned, sequential acquisition of each phase. The phases may be acquired separately, in combination, or
through a down-selection strategy." Because PN 97-19 creates infinite possibilities for confusion, the ACCESS

Accommodation Study Team has adopted the following definitions. These are not to be confused with the
safety review phasing in Table 19 of the main text of this report. For example, Phase 0 (zero) cannot be used

under PN 97-19 because it has a strong heritage in the NASA safety review process. Roman numerals and
Arabic numerals both use the same zero.

Previous Phasing Terminology
• Phase A/B

• Phase C/D (DDT&E)

• Phase E (MO&DA)
• Phase E (MO&DA)

• Phase E (MO&DA)

Terminology - This Report
• Phase 1 (Formulation)

• Phase 2 (Implementation)

• Phase 3 (Deployment to ISS)
• Phase 4 (On-orbit MO&DA).

• Phase 5 (Post-flight retrieval)

2)

3)

At the final JSC Technical Interchange Meeting for this Accommodation Study, Dr. James H. Adams of the
Naval Research Laboratory introduced the suggestion that ACCESS might include a battery in its conceptual
design t°. This could enhance the science data return by allowing the experiment to continue operating even

during the keep-alive conditions on ISS. Batteries, however, raise additional safety issues. Because this
discussion occurred late in the Accommodation Study, it was decided to defer the feasibility of an augmented

keep-alive condition using a battery to a trade study in Phase 2 (DDT&E, Note 1). Dr. Adam's suggestion was
handed over to the Goddard instrument team s at the ACCESS calorimeter workshop two weeks later 87.

The authors express their gratitude to Luanne Jorewicz at JSC for her assistance in editing this report for final

publication.
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Appendix A. Historical Background and Scope of Study

ACCESS began in 1996 as a new mission concept in NASA's Office of Space Science to

perform fundamental cosmic-ray astrophysics investigations from the ISS using a calorimeter. It

was selected with the proviso that a TRD module should be combined with the proposed CAL so

that the composite instrument would provide measurements of the elements from H-Fe at the

highest practical energies. In addition, the capability to measure UH (Z>28) cosmic rays was to

be included. This was a natural merger of techniques and requirements since the separate

modules complement one another and each requires a large-area detector and long exposure time

to make significant measurements of the very rare ultra-high energy and UH cosmic-ray nuclei,

as described in this report.

An Accommodation Study was to be performed by the science team in collaboration with

the engineering team at JSC to assess the feasibility of flying ACCESS both in the Space Shuttle

as transportation system, and on the ISS. The JSC team completed such a study several years ago

for the AMS experiment, and currently works with the AMS team that successfully launched that

payload on its precursor flight (STS-91) in June 1998. It was the AMS that led to the ACCESS

concept, and one of the questions in the study was the degree to which ACCESS might utilize the

expertise and, possibly, the hardware developed for AMS to reduce cost.

A study team to define a preliminary model for the ACCESS instrument was convened,

involving JSC, Louisiana State University (lead for the calorimeter and the precursor balloon

experiment, advanced thin ionization calorimeter [ATIC]), University of Chicago (lead for the

TRD and the balloon experiment, transition radiation array for composition of energetic radiation

[TRACER]), Washington University (lead for the UH and the balloon experiment, trans-iron

galactic element recorder [TIGER]) and the collaborators on these projects plus other members

of the community (University of Maryland, Naval Research Laboratory, University of Michigan,

Caltech, Jet Propulsion Laboratory, and Kanagawa University). This study team refined the

science goals for ACCESS, identified constraints and interoperability, and defined a baseline

instrument concept to go forward into the detailed Accommodation Study. This stage of the

process was coordinated with the Cosmic Ray Roadmapping Committee, which NASA

Headquarters initiated.

In parallel, NASA Headquarters established a Project Formulation Office for ACCESS at

GSFC and funded definition studies for alternate instrumentation concepts and needed technology

development. The two studies have been coordinated with GSFC personnel participating in JSC

technical interchange meetings and JSC personnel participating in the GSFC working group

meetings.

The science goals for ACCESS require maximizing the exposure to the rare ultra-high

energy particles and UH nuclei. As the science team pointed out, achieving a large detector area

is important to mission success. Therefore, a second objective for this study was to look into

larger (and heavier) configurations. For study purposes, these alternate configurations were

derived by scaling the area and the weight and using these to establish the appropriate envelopes

and mass properties. In this part of the study, it was necessary to consider a number of ECS

options.
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Themostbasicquestionthathasbeenaddressedin this reportis "CanACCESSbeaccom-
modatedon theISS(andSTS)within thecurrentlyknownconstraints,requirements,and
attachedpayloadsitedatafor theSpaceStation?" Theanswerappearsto be "Yes,"asexplained
above. At anotherlevel,this studywasintendedto

(i) defineareasof majorengineeringconcernanddevelopaplanto resolvetheconcerns.

(ii) provideabaselineengineeringdesign(andcostestimate)for theaccommodationwork that
canbeutilized in assessingmissionviability andscheduleconstraints.

(iii) developamanagementstructurefor interfacingbetweenSTS/ISSandtheinstrument
developer.

(iv) providefeedbackandsuggestionsto theACCESSscienceteam,theACCESSWorking
Group,andtheACCESSinstrumentdeveloper.

All of thesegoalsareaddressedwithin themainbody of thisreport.
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Appendix B. Detailed Instrument Descriptions

Summary

The ACCESS project derives from the greatly renewed interest in measurements of cosmic-

ray composition and energy spectra, particularly measurements approaching the "knee" region

(Figure 1). The enthusiasm stems from the recent confluence of (1) theoretical developments

related to cosmic-ray origin and acceleration; (2) exciting new data indicating both different

rigidity spectral indices for protons and heavier nuclei and possible bend(s) in the proton spectrum;

and (3) an opportunity to expose large experimental payloads on the ISS.

As described previously, the ACCESS payload for ISS combines three instruments, each of

which is derived from a balloon flight prototype. Figure 3 showed the payload schematically. At

the bottom is the hadron calorimeter (CAL) composed of a target/tracking section followed by a

BGO energy detector. Above the calorimeter is a TRD composed of fiber radiators and propor-

tional tubes to detect the transition radiation X-ray photons. And at the top is the CM designed

to measure the rare UH cosmic-ray nuclei. With the addition of avionics, a thermal control

system, gas resupply, a debris shield, and a carrier structure including the PAS interface, these

three baseline instruments form the total ACCESS payload as shown previously in Figure 21. In

the following subsections, each of the instruments is described in some detail.

B.1 The hadron calorimeter

Achieving the ACCESS science goals requires measurements of all of the elements

(H ...... Ni) to as high an energy as possible. This objective necessitates the combination of the

TRD and a CAL. The science requirements are derived directly from the mission goals, namely:

(a) to combine CAL, TRD, and CM into one functional instrument; and (b) to meet the GOAL

(Galactic Origin and the Acceleration Limit) report measurement objectives _4. The latter call for

the measurement of 10 events above 1015 eV for each of the major charge groups: H, He, CNO,

Ne-S, Ar-Ni. For the CAL, the focus is on H and He since the TRD cannot measure these two

groups. [In addition, an objective is to cross-calibrate the CAL and TRD techniques by measuring a

subsample of high-Z events in both sub-instruments.] The GOAL report TMcalls for an accumulated

exposure in excess of 300 m2-sr-days for H and He and 600 m2-sr-days for the higher-Z nuclei.

Since not all particles passing through the CAL generate measurable events, the exposure necessary

to meet the GOAL objective must be increased by the interaction factor, IF. For IF = 63%, the

required minimum CAL exposure is 476 m2-sr-days. Thus, of necessity, the TRD must be at

least 25% greater in collecting power than the CAL.

A diagram of the baseline CAL is shown in Figure B. 1-1. This instrument may be divided

functionally into two parts: the top "target/tracking" section measures the incident particle's

charge and trajectory, provides a first level trigger, and causes the particle to interact inelastically;

the lower, "BGO" section measures the energy of the ensuing cascade of particles. The highly

segmented Si matrix detector measures the incident particle charge in the presence of background

generated by backscatter from the shower. The C (carbon) target layers (T1, T2, T3, T4) are each
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Figure B.I-1. The baseline hadron calorimeter for ACCESS.

l 0 cm thick and together provide -one interaction length to cause incident particles to interact

without substantially developing a shower. The active calorimeter consists of twelve layers of

BGO crystals, each of which has dimensions 2.5 cm by 2.5 cm by 100 cm long. The twelve

layers provide > 26 radiation lengths for the shower development and alternate layers are

mounted at right angles so that the trajectory of the shower core can be determined. Scintillator

hodoscopes (S 1, $2, $3) between layers of target material provide the event trigger, and

honeycomb structure (P1-P5) provides support for the detectors/materials.

The full device has an area of 1 m 2 and a height of 0.8 m, resulting in a geometrical factor

of < 0.8 m 2 steradian. Taking into account a -63% interaction rate in the target and assuming a

1000-day exposure on board the ISS, the CAL's effective collecting power is 500 m2-sr-days.

We have also considered designs in which the target/tracking section is expanded at the top into a

cone shape and the BGO is reduced in area to maintain the same weight. Such an arrangement

(c.f. Figures 3, 17, and B.4-1, or Appendix E) accepts particles at larger zenith angles, which can

yield an increase in collecting power.

The instrument requirements for the CAL necessitate that it must: (a) force the particles to

interact, (b) measure the charge of each incident event, (c) determine the trajectory through the

instrument, and (d) measure a signal proportional to the total energy of the incident particle.

These requirements, and the ensuing instrument design, are explained in more detail below.

B.I.1. lonization calorimetry: target and BGO

At the ultra-high energies to be studied by ACCESS, the practical method to measure H and

He, and other elements, in the cosmic rays is ionization calorimetry. In an ionization calorimeter, a

particle' s energy is deposited inside a medium via a cascade of nuclear and electromagnetic

particles. At each step of the cascade, the energy of the primary particle is subdivided among
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manysecondaryparticles.Theintegralof thedepositedenergyversusdepthis ameasureof the
energyof the incidenthadron. In principle,adevicethat is tensof interactionlengthsdeepwill
provideenergyresolutionlimited only by thestatisticalnatureof thecascadeprocessandthe
measuringtechnique.Such"thick" calorimetersarepossiblefor ground-basedexperiments,but
instrumentsfor spaceapplicationsarenecessarily"thin." In thiscase,thecalorimeterresolution
depends,aswell, on thefluctuationsin theenergytransferredto secondaryparticlesin thefirst
few interactions.Thus,anoptimalcalorimeterwouldhaveatargetasthick aspossiblein
interactionlengths,to forceinteractionsof boththeincomingprimaryandsecondaryhadrons,
while remainingthin in termsof radiationlengths,sothecascadedevelopmentoccursnot in the
targetbut in thecalorimetermaterial. Thecalorimetermaterialshouldbethick in termsof both
radiationlength,to absorbthecascades,andinteractionlength,to forceadditionalinteractionsof
bothsecondaryandprimaryparticles. Theenergyresolutionimprovesasthecalorimeterismade
deeperbecauseadditionalinteractionsoccur,which resultsin a largerportionof the incident
energyappearingin theelectromagneticcomponent.Finally, if thecalorimeteris sensitiveover
its full volume,it will observethetotaldepositedenergy. FromMonteCarlosimulationsand
detailedinvestigationsusingaccelerators,thereis agoodunderstandingof how theenergy
resolutiondependsondepth,materials,particlespecies,andprimaryenergy5°-55.

Practicalinstrumentsfor balloonor spaceapplicationsmustnecessarilybe limited in
absorberthicknessin orderto haveareasonablecross-sectionalarea,i.e. geometricalfactor,for
collectingtheparticles.Theminimumdepthdependson theenergyresolutionacceptablefor a
particularexperiment.A thin CAL to measurethespectraof galacticcosmicraysmustmeettwo
basicrequirements:(1) theprimarynucleusmustundergoat leastoneinelasticinteraction;and
(2) theelectromagneticenergyresultingfrom theinteraction(s)mustbemeasuredwith good
resolution.An optimaldesignwouldhaveatargetthicknessof aboutoneprotoninteraction
lengthlocatedupstreamof anelectromagneticcalorimeter,whichmustbesufficientlythick in
radiationlengthsto developthephotoncascadesensuingfrom theneutralpionsproducedin the
interactions.

Consideringtheserequirements,C is anearlyideal targetmaterialsincethiselementhas
2.02radiationlengthsperprotoninteractionlength(38cm at adensityof 2.265gcm-3)andis
readilyavailable.Forthecalorimetermaterial,BGO is alsonearlyidealwith aradiationlength
equalto 1.12cm,with adensityof 7.1g cm-3andabout20 radiationlengthsperinteraction
length. BGOis aninert,non-hygroscopicscintillationcrystalthathasno tendencyto cleaveor
shatterandis radiationresistant.It is widely usedin acceleratorexperimentsandis appropriate
for exposureon theISS. Theotheradvantageof BGOis thatit is a scintillatorand,thus,the
calorimetercanbemadefully active,therebyavoidingtransitioneffects. Forthesereasonsthe
ACCESScalorimeteradoptedfor thebaselinestudyusesC asthetargetandtheionization
measurementis madebyBGO crystals.

Theanticipatedintegralcascadecurves,i.e. themeanenergydepositedasafunctionof
increasingBGOthickness,for anACCESS-typeCAL is illustratedin FigureB.1-2for protonsat
10,100,103,104and105GeV incidentverticallyon thetopof thetargetsection.Theseresults
weregeneratedwith theGEANTMonte-Carlocodefor a 25-cm-thickstackof BGO. Themean
energydepositionfor protonsis about30%-40%of the incidentenergy,andis almostlinearwith
the incidentenergy.Theenergyresolution(theratioof thestandarddeviationof theenergy
depositdistributionto themeanenergydeposit)variesfrom 30%to 40%below 10TeV, but it
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degradesto about60%at 100TeV. This is dueto thelimited thicknessof the BGO in these
calculations.ForACCESS,theBGOwill beat least30cm in depth,sufficient to achieveresolu-
tion of <50%at all energies.Forheaviernuclei, thesituationimproveswith increasingcharge.
For He, thecalculatedresolutionis30%-40%,while for Fe it is 10%-20%56

Figure B.1-2.

Incident. Energy.

100 TeV

10 TeV

1 TeV

• • • 100 GeV

10 GeV

0 .5 I 0 15 20 25 30 ,_5
BGO depth (crn)

.... , .... i - • - i • - - i .... , II
0 5 10 15 20 25 30

Number of ro'diotion Length

Monte-Carlo calculated integral cascade curves for a C-BGO instrument.

B.1.2. Charge, backscatter, and tracking

In a calorimeter experiment, particles are backscattered from the calorimeter into the upper

hemisphere 57. These albedo particles consist mostly of relativistic (several MeV) electrons that

result from gamma rays scattered into the backward hemisphere of the calorimeter. They also

include non-relativistic particles, which may result either directly from nuclear interaction products

emitted into the backward hemisphere or from albedo neutrons produced in the interactions.

Simulations confirm that as the energy increases, the number of backscattered particles per unit

area increases, potentially adding to the charge signal of the incident cosmic ray and degrading

the charge resolution, including distinguishing Z=I and Z=2. In fact, it is rather widely accepted

that backsplash from the calorimeter was responsible for confusing protons and He, leading to a

claimed spectral break in previous experiments 5859. The magnitude and energy dependence of

this albedo becomes smaller with an increase in the distance and the amount of matter between

the point of the first interaction and the charge detector. For example, when the first interaction
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occursdeeperin thetargettheaveragebackscattersignalin thechargelayersis muchsmaller
thanwhenthefirst interactionoccursnearthetop of thetarget.

In thebaselineCAL of FigureB.1-1,thetopmostlayersareaSi detectorfollowed bya
scintillatorlayer(S1). S1is formedfrom two layersof 2-cm-wide,1-cm-thickscintillator strips,
arrangedorthogonallyto providebothanx- anday-measurement,aswell asafast triggersignal.
Baseduponsimulationsof thebackscatter,the2-cm-widestripsbecomeinefficientat separating
Z=1,2at about10TeV,dueto thepresence,somewherealongthestrips,of severalalbedoparticles.
To providereliablechargeidentificationat highenergy,adetectorwith two-dimensionalsegmen-
tationisneeded.This isprovidedbytheSi detector,which isamatrixof smallindividualdetectors
constructedsoasto coverthefull apertureof the instrument.Simulationsshowthat,with this
pixelation,thefractionof misidentifiedprotonsremainsatthefew-percentlevel. For ACCESS,
weplanon pixelsabout2 cm x 2 cm or smaller,which,combinedwith thestrip scintillatorsand
trackinginformation,shouldeliminatethebackscatterambiguity.

TheSi-matrix alsoprovidesexcellentchargeresolutionup to Ni to compensatefor the
saturationin thescintillatorat highcharges.In thecaseof abarecalorimeterinstrument,theSi +
S1will providetheidentity of the incidentcosmicray. In theACCESSconfiguration,however,
theparticlesobservedatthetop of theCAL mustfirst penetratetheTRD and CM instruments.

The mass in these instruments guarantees that some of the events will interact before reaching the

CAL, fragmenting in the case of heavy ions, plus interacting and beginning to develop a cascade.

For these events, it is vital that the incident particle's charge be determined at the top, in the CM,

and that its position of incidence or trajectory be known, to compare to the data from the CAL
instrument.

Particle tracking is required to correct for the angle of incidence effect in the cascade curves

and in the charge detectors. In addition, the use of pixelated detectors requires tracking to point

to the pixel containing the incident particle. The shower develops along the particle's trajectory,

so determining the shower axis is equivalent to measuring the trajectory. In the ACCESS design

of Figure B. 1-1, every alternate BGO layer is oriented perpendicular to the adjacent layers, pro-

viding twelve measurements of the shower core. Analyzing the distribution of energy deposition

across a single layer determines the centroid of the shower. Fitting these centroids determines

the shower axis. In addition, there are two additional scintillator layers ($2 and $3) in the middle

and at the bottom of the target/tracking section and each of these, like S 1, are composed of an x-y

pair of planes of scintillator strips. Signals are read from both ends of the strips providing a

redundancy in determining the location of a particle's path or the axis of a developing shower.

Combining the BGO, scintillators and Si-matrix provides the information to be compared to the

data available from the TRD and CM. For events that enter at an angle and do not traverse the

CM or the full TRD, the CAL has the ability to measure the charge, energy, and trajectory of the
event.

It should be noted here that the scintillators (S1, $2 and $3) provide the first-level trigger

for the CAL. This coincidence determines the geometrical acceptance of the instrument, ff a

particle does not interact and generate a cascade, the BGO would not provide the second-level

shower trigger and the event would be discarded.

A refinement to the CAL concept, not included in the baseline, is the addition of layers of
scintillating fibers, e.g. 1-2 mm 2 fibers, which would provide even finer resolution of the shower
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core and thereby improve the trajectory resolution. Such an addition will be considered later, as

the ACCESS project is developed further.

B.1.3. Detector readout electronics

There are a large number of channels to be read from the CAL, particularly when the large

dynamic range is considered. For a 1-m x 1-m CAL, each of the scintillator layers consists of

100 strips, 50 in the X and 50 in the Y direction. Each strip is read out with a photomultiplier

tube (PMT) on each end. To cover the dynamic range from Z=I to Z=28, two dynodes from each

PMT must be pulse height analyzed. This gives 400 channels of information per scintillator layer
and 1200 channels in total for S1, $2 and $3. In addition, the 600 anode signals are utilized to

form the first-level trigger to select events within the instrument acceptance.

For the Si-matrix, assuming each pixel is 2 cm x 2 cm (the exact size of a pixel may be less

than this), there will be about 3200 separate detector units when the necessary overlap is taken

into account. Each of these must be read out and then interrogated to determine which ones

contain a signal to be pulse height analyzed. To cover the dynamic range from H to Ni, each

pixel must be analyzed in two separate gain ranges, giving a total of 6400 channels.

The baseline BGO stack contains twelve layers, each of which has 40 crystals, each 2.5-cm

x 2.5-cm x 100-cm crystals. These are read out on both sides via photodiode detectors, a sketch

of which is shown in Figure B. 1-3. The dynamic range extends from the energy deposit of several

minimum ionizing particles to the maximum energy deposit that could occur in the center of the

cascade due to the highest energy particle to be measured. This latter value has been determined

from simulations, with the result that the dynamic range exceeds a factor of 10 6. This can only

be handled by multiple readout channels, and Figure B. 1-3 shows three separate photodiodes

attached to one side of one crystal. This implies 240 channels per BGO layer and a total of

Figure B.1-3.
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Schematic representation of the readout of one side of a BGO crystal.

2880 channels for the full calorimeter. An alternative design, depending upon procurement

limitations and mechanical packaging considerations, divides each crystal into two pieces, i.e.

two 2.5-cm x 2.5-cm x 50-cm crystals, mounted adjacent to each other with a support structure in
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the center. Each crystal is still read out with three photodiodes, so that the number of channels

remains unchanged.

There is, however, some remaining ambiguity in these estimates since the final size of the

calorimeter depends upon the total mass available to the CAL instrument. This mass varies

depending upon the size and mass of the other two instruments and the estimated weight for the

structure, avionics, radiators, etc. For example, in a lighter configuration, the CAL is reduced to

0.9 m x 0.9 m, which decreases the number of scintillator and BGO channels to 1080 and 2592,

respectively. Similar scaling applies to the Si-matrix.

The overall CAL requires handling ~ 104 channels of information which, in turn, requires

the use of application-specific integrated circuits (ASICs) to minimize the power consumption

and the weight of the electronics. The use of ASICs then entails relatively sophisticated control

logic and digital data handling. A schematic diagram of the readout system electronics is shown

in Figure B. 1-4. Beginning at the right side with the active detectors plus their PMT or photodiode

readout, the chains proceed to the left to the DCU, which provides the event data for the instrument
readout/ACCESS data interface unit to the ISS. The ASICs are contained in the blocks labeled

FEMs (front end modules), which take the analog signals from the detectors and convert them to

digital data. The ACLBs (ASIC control logic board) provide all of the setup, clock timing, and

other signals required to operate the ASICs and pass the digital information to the digital interface

module (DIM). The DIM/ACLB also passes command and control information to the FEMs.

The division between functions in Figure B. 1-4 indicates physical location as well. The FEMs

must be physically close to the photodetector readout devices, while the ACLBs and DIMs can be

mounted elsewhere and cabled to the FEMs. Note that one ACLB can service a number of

FEMs; and, likewise, one DIM can handle multiple ACLBs.

__ i Trigger L°gic & iate C°unters _ In Om_meernts]

Figure B.1-4. Readout electronics for the CAL detector subsystems.
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The readout of an event is inherently asynchronous, started by the arrival of a cosmic-ray

particle. This is controlled by the trigger logic module, which also provides overall normalization

through the use of rate counters. The trigger must start the readout based upon the first-level

trigger derived from the scintillator signals. The somewhat slower BGO signals are used to

determine the size of the shower, which then classifies the event. For low-priority classes (e.g.

low energy) only a small fraction will be transmitted to the DCU. The rate counters will count

the rest, but the readout will be terminated and the FEMs reset to await another cosmic ray. This

reduces the data volume coming from the CAL and minimizes the deadtime of the instrument.

There are at least two separate types of ASICs involved in the readout. Based on the expe-

rience with the balloon prototype, ATIC, one ASIC should be able to handle the scintillators and

BGO readouts while a second type of ASIC will be required for the Si-matrix detector. (The

corresponding ACLBs will, of necessity, differ as well.)

In ATIC, the ASIC for the Si pixels is a new derivative of a chip originally developed for

DESY called Amplex 6°-6_. There is a whole family of Amplex derivatives used in high-energy

physics. The one ATIC is developing is called CR1.4. This ASIC has 16 channels, each containing

a charge-integrating preamplifier, a shaper, a hold circuit, and a discriminator. Each channel is

multiplexed to an output buffer/driver. The gain of the output buffer can be switched from 1X to

10X. The dynamic range covers 1400 Mips (minimum ionizing particles in Si). Except for the

discriminator and the hold circuit, this chip is analog; the output is a voltage level corresponding

to the input charge of the selected channel. The conversion gain is about 5mV/Mip for the 1X

buffer setting. An external ADC is required to switch each channel and digitize the signal.

The ASIC used in ATIC for the scintillators and BGO is a non-rad-hard version of a 16-

channel chip developed for the ACE (advanced composition explorer) mission 62-63. Each channel

contains a charge-integrating preamplifier, a switched capacitor array (3 caps), a difference

amplifier, and a Wilkinson-type run down/up analog-to-digital converter (ADC). In addition,

each channel has a pickoff at the output of the preamp with a shaper and two discriminators.

Each set of discriminators is OR'd for all 16 channels, giving effectively two discriminated

output signals for the entire chip.

In "waiting-for-event mode," two capacitors of the array are switched into and out of the

preamp output, basically switching one in while the other is out (called ping-pong). The third

cap is continuously switched in at that time. An external trigger stops the ping-pong and switches

the third cap from the preamp into holding mode. To digitize the signal, cap 3 and the cap that

was switched off the preamp the longest time before the trigger occurred are switched to the two

inputs of the difference amplifier. A constant current source begins to discharge cap 3 and a run

down/up counter is started. Each channel individually stops the rundown/up once the difference

amplifier reaches zero. The overall rundown/up is stopped after the maximum count of 4096

(12 bit) is reached. The ADC values are serially clocked out to the control circuit, the ACLB.

The ping-pong is resumed and the process starts over, waiting for a new trigger.

B.1.4. Data rate

The data rate from the CAL is controlled by the threshold selected for full pulse height

analysis. For a threshold at 5 x 1013 eV (0.5 TeV), there will be, on average, 0.26 events per

second. We assume that the instrument data system will perform sparsification (eliminating
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channels with no or low signal(s)), resulting in an average event reading out 5 strips per scintillator

hodoscope layer, 4 BGO units per calorimeter layer, and 100 Si pixeis. Each Si pixel requires an

address plus two 10-bit ADC values; each scintillator readout involves an address plus two 12-bit

ADCs; and each BGO readout requires an address plus three 12-bit ADC values. This gives

8752 bits per event and 2.3 kbps for the average event-generated data rate.

To this must be added (a) rate counter readout, (b) calibration data, and (c) housekeeping

data. Assuming 64 rate counters, each of 24 bits, read every 10 seconds, the rate counter data

rate is 0.2 kbps. We plan to incorporate an onboard calibration mode (pulsers) that will monitor

the performance of the detectors and the electronic readout systems. Assuming a calibration

"run" exercises all of the channels, there will be a high rate of 317 kbits. However, a calibration

run will be needed, at most, every 10 minutes, giving an average calibration data rate of 0.5 kbps.

The housekeeping system to be developed for ACCESS will monitor voltages, currents,

temperatures, and the like at various locations in the instrument and for each of the major subsys-

tems. Periodically these data will be formatted and transferred to the data system for downlink.

We estimate a volume of 3 kbits read every 5 minutes for an average data rate of 0.01 kbps.

Combining these three sources of data together, the average raw data rate from the CAL

will be very modest, just over 3 kbps. These data will need to be formatted for transmission to

the ISS and we are assuming use of CCSDS (Consultative Committee for Space Data Systems)

encoding. We assume that housekeeping data are transmitted frequently via the ISS 1553B link.

The event and calibration data may need to be buffered for infrequent transmission via the fiber

optic link. Each of these requires some overhead. Allowing a 33% margin for overhead and

growth, the CAL is not expected to average more than 4 kbps.

B.1.5. Power consumption

The total power required for the CAL instrument is composed of a number of parts, not all of

which are fully specified at this time. In particular, the power involves (a) instrument operation,

(b) data handling, (c) voltage conversion, and (d) thermal control (heaters). Several of these require

further definition of the overall payload and its subsystems before accurate estimates can be assigned.

The power for instrument operation is perhaps the best known, but still depends upon the actual

power consumption of the ASIC chips to be developed for the ACCESS program and assumptions about

the needed ACLB. Based upon the balloon prototype, we assume ASICs can easily be developed with

power consumption of 2 mW/channel for the Si-matrix and 10 mW/channel for the scintillators and

BGO readouts. Further, we assume 8 W for ACLB to handle these ASICs (but this is only a first

estimate). Combining these with detector bias, ADCs, and DIMs, we obtained the following estimates:

Si-matrix 27 W

Scintillators 32 W

BGO stack 36 W

for a total detector power of 95 W. (The uncertainty here may be a factor of two depending upon

the ASIC, the complexity of the FEMs and ACLBs, and the actual layout of the flight systems.)

To this must be added the power needed for the DCU, the housekeeping system, the control

systems, trigger logic and rate counters, and the calibration system (pulsers and controls). The

estimates here are also uncertain but a minimum requirement is 25-30 W. This gives a total

instrument operating power of 120-125 W as a minimum (with -200 W as the worst case).
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Theextentof thedatasystemrequiredby theCAL dependsuponthecapabilitiesof theavionics
thatinterfacewith theISSdatasystems.Thisremainsundefined,sothattheCAL mayrequireadata
systemthatcanrangefromasimplebuffertoa sophisticatedlarge-scalememoryandprocessingunit.
Powerconsumptionmayrangefrom 10-30W, dependinguponthecomplexityof thesystem.

This totalof 130-155W is actualpowerbeingconsumedat theappropriatevoltages.These
voltagesinclude-1 kV for thePMTs,-100 V for theSi andphotodiodebias,and_+5,_+7.5,12
and_+15V for theelectronics.Beginningwith a28 V powersystem(suchasis usedin theballoon
payload)anaverageconversionefficiencyutilizing commercialDC-to-DCconvertersis about
65%. This implies theneedfor 200-240W of input powerat28 volts.

TheISS,however,providespowerat 120VDC, nominal,to theattachedpayloads.Con-
vettingthis to 28 VDC involvesanotherlossdueto conversionefficiency. If suchis to bedone
within theCAL instrument,therawpowerinput to theCAL increasesby 20%-25%.

Finally,thereis thequestionof thermalcontrol. Almostcertainlysomeheaterswill be
requiredto minimize gradientsandto maintainthe instrumenttemperature.Dependinguponthe
thermalcontrol system(TCS)capabilities,this heaterpowercanrangefrom 10W to ashighas
100W. SpecifyingtheTCS,anddeterminingthelevelof heaterpowerrequired,is oneof the
high-prioritytasksfor ACCESS.

B.1.6. Thermal considerations

The CAL instrument requires a relatively constant temperature with minimal thermal

gradients throughout the BGO. This is because the light output from BGO is temperature

dependent. We are planning to monitor the temperature continuously, but do not believe it is

desirable to correct every event for a different temperature. Therefore, we are baselining a

temperature variation of:

< 1-2°C per orbit

< 2-3°C per 45-50-day period

< 5°C per year

where these apply specifically to the BGO volume.

The desired operating temperature for the CAL is -10°C, with a desired range of 0-20°C.

The full operating range limits are:

Min. (°C) Max. (°C)

Si Matrix -25 +30

Hodoscopes -25 +30

Calorimeter - 10 +30

DCU - 5 +40

Instr. Control Elec. -20 +50

The operating temperature gradients should be:

Si-matrix < 2°C across the detector

Scintillators < 5°C ......

BGO < 2°C ......
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Finally, the survival temperature ranges have been estimated to be:

Min. (°C) Max. (°C)
Si Matrix -40 +40

Hodoscopes -40 +50

Calorimeter -40 +50

DCU -45 +75

Instr. Control Elec. -55 +85

The above are the initial estimates to be used in the early planning and development process.

These will be refined as additional design work is performed and the hardware is developed.

B.1.7. Science results

The number of events to be observed by ACCESS have been estimated from fits to the

available data above 50 GeV/nucleon. The proton differential energy spectrum at high energy is

proportional to E 275 while the He spectrum is flatter, proportional to E -266. For heavier nuclei,

(C, O .... ) we have assumed an energy dependence identical to He (i.e. E z66) scaled by the

rclativc abundancc of the species relative to He.

Table B. 1- 1 gives the results for six different elements above four total energy thresholds

for thc CAL, assuming 1000 days of full exposure.

Recent results from the JACEE (Japanese-American cooperative emulsion experiment)

measurements 19 indicate slightly larger spectral indices, -2.80 _+0.04 for H and -2.68+0.04, -0.06

for He. The indices assumed above are within the quoted uncertainties on these new measure-

ments, but the steeper spectra would reduce, slightly, the predicted number of events. Moreover,

JACEE has reported 64 harder spectra for C-O and Ne-S than utilized in the above calculations.

Such spectra would increase the predicted number of events in Table B. 1-1 for nuclei heavier

than He. Finally, the cosmic-ray nuclei (CRN) experiment 21'65on Spacelab-2 observed a smallcr

number of Si at the highest energies, yielding a steep Si spectrum. This spectrum would reduce

the expected number of Si events compared to the numbers in Table B.I-1. ACCESS will

resolve many of these questions about the heavy element spectra.

Table B.1-1. Integral Counts for Continuous Spectra

>50 TeV > 100 TeV > 500 TeV > 1000 TeV

H 1487 442 26.4 7.9

He 1357 429 29.7 9.4

C 267 85 5.8 1.9

O 388 123 8.5 2.7

Si 148 47 3.2 1.0

Fe 279 88 6.1 1.9

Of interest for ACCESS is the limit of the SNR acceleration process. In the simplest

model, the accelerator is predicted to "turn-off" at Z x 1014 eV. Thus, we expect a 'break' in the

power law energy spectrum at about this energy. We have modified the calculations presented

above to include a steepening in the spectrum by 0.3 at Z x 100 TeV (e.g. the proton spectrum
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becomes E -3°5 above 100 TeV). The expected numbers of events in this case are presented in

Table B. 1-2 for the same energy ranges as Table B. 1-1.

Table B.1-2. Integral Counts Including Spectral Breaks

>50 TcV > 100 TcV > 500 TeV > 1000 TeV

H 1421 377 13.9 3.4

Hc 1336 409 19.1 4.9

C 267 84 5.2 1.3

O 387 122 7.9 2.1

Si 148 47 3.1 0.9

Fe 279 88 6.0 1.9

Note that the effects of the predicted spectral steepening are observed in the H and He event

numbers at the highest energies, > 500 TeV, with a smaller effect for those > 100 TeV. For C and

O, such a 'break' can just barely be observed at > 1000 TeV, and it will require the larger event

statistics from the TRD at energies > 50 TeV/nucleon to establish such a spectral change. For still

heavier nuclei, the assumed 'break' occurs at such a high energy that it will be difficult to observe.

Figure B. 1-5 shows the anticipated results for H and He for the two cases presented in the
tables. Plotted is the flux that would be measured by the CAL multiplied by E 25 and compared

to a compilation of previous results. The solid squares show the effect of the spectral 'break'

when compared to the open squares, which represent continuous spectra. The error bars are

statistical uncertainty only and the flux values are multiplied by E 25. The open squares assume

no break in the spectrum, while the filled squares assume that the spectral index steepens by 0.3

at a total energy of Z x 100 TeV.
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Figure B.1-5. H and He results (large squares) estimated for a 1000-day ACCESS mission

compared with previous data.
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Achieving good statistical precision at the highest energies is clearly necessary, and this is

the goal for ACCESS on the ISS.

B.2. The charge identification module (ZIM)

The following description of the ZIM for ACCESS is adapted from a preliminary instrument

description 66 prepared by the University of Washington instrument team in support of the two

ACCESS program studies 7"8, as members of the Accommodation Study Team 7 and the science

instrument definition team 8. It has been shortened to fit the format of Appendix B for this report.

B.2.1 Instrument concept

The ZIM has as its primary objective the measurement of the cosmic-ray abundance of

every individual element in the interval 26 < Z _<83 with accurate element resolution and with

sufficient collection power to give excellent statistical significance. This instrument will, for the

first time, determine the full element-by-element composition of cosmic rays, throughout the heavy

two-thirds of the periodic table. This will provide data for definitive tests of theories regarding

sites and mechanisms for cosmic-ray acceleration. In addition to unambiguous determination of

Z, the system will also define the energy E of the cosmic rays in the interval of approximately

0.3 _<E < 20 GeV/nucleon. Finally, the detectors will measure the actinide elements, 90Th and 92U,

although limitations on the size of ACCESS will limit the statistical significance of these data.

The complement of detectors included in ZIM will also resolve individual charges in the

interval 10 < Z _<26. In this region, the instrument can determine energies up to at least 10 and

possibly 100 GeV/nucleon, which will complement the higher-energy data from the TRD described
in section B.3.

The UH configuration is also expected to serve as the CM for the full ACCESS instrument.

The dynamic range of the Si detectors should permit measurements down to Z=I. These detectors

should also serve the entire Z-range of high-energy measurement and thus provide complementary

measurements to the ACCESS calorimeter (sectionB. 1) and TRD modules.

B.2.1.1 Design drivers

There are a number of detector qualities that drive the design of the detector. This includes

minimizing the weight, power, and bit rate without compromising experiment objectives. Other

items that are important in the instrument design are:

1) Minimize material traversed by the cosmic rays. This will minimize the number of nuclear

interactions, which increases the number of good particles that we can collect while reducing

the number of interacted particles which must be effectively rejected in the data analysis.

2) The material in the beam must be as uniform as possible. Non-uniform materials result in

the creation of differing amounts of knock-on electrons for particles traversing different

locations within the detector. This results in variations of signal from the detectors and

reduces the charge resolution that can be obtained.
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3)

4)

5)

The radiator or detector active area must be maximized, to maximize the number of particles
that can be collected.

There are two light-collection boxes. These should have the maximum surface area possible

covered by PMT photocathodes to optimize light collection. That is, as many 5-inch tubes

as possible should ring each of the light-collection boxes.

The Si detectors will probably be pixelated, which will give the capability to detect and

identify Z= 1 nuclei. In addition, if a detector starts drawing a large leakage current, it usually

would limit the detector loss to a single pixel.

B.2.1.2 Overall instrument description

The instrument under study utilizes Si dE/dx detector arrays, two Cerenkov counters with

radiators of different refractive index to measure velocity, and a scintillating fiber hodoscope for

trajectory determination. Figure B.2-1 shows a cross-sectional drawing of the baseline instrument.

The overall dimensions of the detector are 2.5 meters square by 0.5 meters deep. This instrument

provides a useful radiator area of -206 cm square and a total geometry factor for entry in one

direction of 8.7 m2sr. The fiber outputs are only shown for the left half of the instrument so that

the other detectors can be seen. Figures B.2-2 and B.2-3 illustrate an exploded three-dimensional
view.

I

I
I
I
I

Silicon dE/dx Aerogel Cherenkov

======================================= " 1DO
50 cm

L

Acrylic Cheren_ _v Radiator I I
I

' Scintillating Fibers I I
MAPMTs Fiber Outputs 2.06 1 I

2.5 I_I

Figure B.2-1. ZIM instrument cross-sectional view. The fiber outputs (triangular regions)

and MAPMT (multi-anode PMT) readouts are shown only on the left half of the

instrument for clarity.
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SILICON

SILICON 2

SILICON 3

TOP HODOSCOPE ZM_x 2M
ARE OGEL CHERENKOV

LIGHT BOX "-18-Shi PMT's

SHICON 4

BOTTOM HODOSCOPE 2M_x2M

\
PILOT CHE1LENKOV

LIGHT BOX 48 -Sht PMT's

Figure B.2-2. A three-dimensional view of the ZIM instrument.

Silicon 1

Silicon 2

TOP HODOSCOPE 2Mx2M
AREOGEL CHERENKOV
LIGHT BOX 48.5in PMT s

-- Honeycomb

-- Honeycomb

Silicon 3.----------_

Silicon 4

BOTTOM HODOSCOPE 2Mx2M PILOT CHERENKOV
LIGHT BOX 48-5in PMT,S

Honeycomb

Honeycomb

Honeycomb

Figure B.2-3. An exploded three-dimensional view of Figure B.2-2 above.

Going from top to bottom, the order of the detectors is as follows:

1. Si detector layer 1

2. Si detector layer 2

3. Top fiber hodoscope (layers x and y)

4. Aerogel Cherenkov counter

5. Acrylic Cherenkov counter

6. Si detector layer 3

7. Si detector layer 4

8. Bottom fiber hodoscope (layers x and y)
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B.2.1.3 Basic mechanical structure

Figure B.2-4 depicts the Cerenkov light box sidewall construction. In the current concept

the sidewall is fabricated out of aluminum. The structure is hogged out of the aluminum and has

the dimensions shown in the drawing. In this drawing the sidewalls for the two light boxes are

shown as an integral unit. The weight of this wall is 22.2 lb. It is more likely, however, that

these will be separate as shown in Figure B.2-3 to facilitate detector testing. Thus the sidewall

for one light box would weigh around 12 lb. The strawman configuration assumes that these two

boxes are separate and will be bolted together at their adjacent flanges.

3//_"

Figure B.2-4. The Cerenkov light box sidewall construction.

It is anticipated that the top Si and fiber hodoscope will require a support plate. It appears

that it is not possible to use a lightweight foam support panel (which would provide the best

material uniformity) since there appear to be none that is space-qualified. That being the case,

the recommendation 8 is to use an aluminum honeycomb panel with thickness 0.5 inch, facesheets

of 0.020-inch aluminum, a core web size of 3/8 inch, a web thickness of 0.002 inch, and an

adhesive FM-73 made by Cytek. The adhesive has a nominal thickness of 0.0035-0.005 inch and

has an average fillet thickness of 0.002-0.005 inch. (This corresponds to an areal density of

0.0122 g cm 3 for each adhesive layer and an adhesive density of 1.13 g cm-3.) The weight of the

adhesive is 0.020-0.030 lb ft-2. It is preferred that the facesheets be made of O.O10-inch aluminum

instead of 0.020 inch to minimize interactions. A 0.5-inch-thick core is assumed as the strawman

for ZIM. To use a support plate this thin will probably require a center support post that runs

vertically throughout the instrument. With that support post, the estimate is that the displacement

under Space Shuttle loads would be ~0.01 inch, which at this time appears acceptable.

At present five such support plates are assumed to be required (locations indicated by the

honeycomb label and arrows on Figure B.2-3). The first would be beneath the top two Si planes

and would support them; the second would serve as the support for the top fibers and the top of

the box for the aerogel Cerenkov (with a separate thin aluminum bladder for a light seal probably
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on the aerogel box); the third would serve as the bottom of the box for the acrylic Cerenkov

(again with a separate aluminum bladder for a light seal probably on the aerogel box); the fourth

would be the support for the bottom Si planes; and the fifth would be the support for the bottom

fiber planes.

Figure B.2-5 shows a comer support that would be used as the vertical structural member

to tie the experiment together and as the mount to the TRD detector below. One of these would
be located at each of the four comers of the ZIM instrument. These would also serve as the

Figure B.2-5. Illustration of a corner ZIM support.

attach points for ZIM to the Space Shuttle and Space Station payload support carrier. The

JSC/Lockheed Martin Accommodation Study has suggested additional attachment between the

center of each of the ZIM sidewalls and the mounting structure. It appears that four such attach

points, each of which would be centered both vertically and horizontally on the ZIM instrument,
can be accommodated.

B.2.2 Instrument detectors

B.2.2.1 Silicon detector

The ZIM instrument uses arrays of Si detectors for dE/dx measurements. There are four

planes of Si arrays with two planes on top and two near the bottom of the detector stack (Figures

B.2-1 through B.2-3). Each plane of Si detectors is composed of an array of 10-cm-square Si

wafers with thickness 380 lam. For the two top and two bottom detectors, each 10-cm wafer in

the second plane is located directly below the detector in the first plane in the strawman concept.

(On the bottom two Si planes, the two planes may be offset in X and Y to achieve 100% coverage if

it is important, but at present this is not being done.) The result will be an incomplete coverage

(>90% coverage) but will provide a known, uniform thickness for all particles that traverse the

active area of the top (and bottom) Si planes. Each of the 10-cm wafers will be segmented into a

7x7 pixel array (other segmentation may be considered) with each pixel having dimensions 1.4 cm

square. This reduces the capacitive noise on the Si detector, thus making it possible to extend the

dynamic range down to Z= 1. This will be useful for calorimeter events in distinguishing the

primary particle from backsplash particles and in identifying the charge of the primary particle.

In addition to providing dE/dx measurements, the Si detectors also serve as a coarse hodoscope

which will be used for consistency checks on the fiber hodoscope described below.
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A top view of a 1-m 2 panel for a single Si plane would show each plane consisting of four

50-cm subpanels, each of which hold a 5x5 array of 10-cm-square Si detectors. The plan is to

mount the detectors on a C fiber substrate that is supported by a support frame. Because this is a

secondary instrument structure, such a lightweight material is not subject to the more stringent

safety review criteria discussed under Table 3 in the main text of this report. The 50-cm frame

would also be a C composite frame. The two Si planes on top (or bottom) would be stacked and

optically decoupled. The stacking method is TBD. This concept is described in more detail in

Table B.2-1.

Table B.2-1.

Module configuration

Circuitry location

Si Detector size

Active area

Detector thickness

Number of detectors

Number of pads/detector

Pad size

Total channels per m 2

Readout

Threshold

Full Scale

Power per ADC

ADC power per m 2

Leakage current/pad

Bias

Leakage current power per m 2

Coverage

dE/dx measurements

Uniformity

Detector mass

G- 10 mass

C mass

Detector cost per m 2

Silicon Detector Layout Concepts_t

0.5 m x 0.5 m tray with individual G-10 mounts:

C fiber frame

On C frame or on bottom of substrate

10cmx 10cm

-9.6 cm x 9.6 cm

0.38 mm

100

49

1.4 cm x 1.4 cm

4900

New VLSI

0.5 mips (70keV)

20K rnips (3 GeV)

-<1 mW

510W

<lmA

-100 V

<lW

90% top and 90% bottom

2 top and 2 bottom for >90% area

100%

0.9 kg

2.7 kg

0.3?

$0.3M

* All quantities are per square meter and one layer of coverage.

The possibility of offsetting one of the Si layers in the bottom Si detector to provide 100%

coverage for calorimeter events has also been considered. Although this is still a possibility, it is

not included in the baseline concept since it is not clear how important that change is to the

calorimeter and its implementation is somewhat more difficult.

To measure cosmic rays of atomic number 10 to 100 at all energies above 300 MeV/nucleon at

incident angles from 0 to 60 degrees requires a dynamic range of approximately 300. The charge-

sensitive preamplifier must provide adequate dynamic range while minimizing the contributions
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from electronic noise. Existing ASIC designs now in space on ACE and in the ATIC balloon

payload have solved these dynamic range and noise problems. With such ASICs the power

requirement will not exceed about 4 mW per channel. These and other ASICs are now being

evaluated for use on ACCESS. It is expected that the dynamic range can be extended down to

Z=I through the use of two to three ADCs for each signal.

B.2.2.2 Fiber hodoscope/time of flight (TOF)

Just inside of the top Si array and at the bottom of the detector stack are two planes of a coded

scintillating fiber hodoscope. Each plane of fibers is composed of two layers of ~0.5-mm fibers,

one layer for x- and one for y-coordinate measurements. Each of the four hodoscope layers has

fibers combined into eight modules, each with width -26 cm. The fibers in each module are read

out using a 16-element MAPMT (Hamamatsu 5900-016) at either end of the fibers. Adjacent fibers

are grouped in pairs (elements) and are coded differently at opposite ends such that the position of a

particle traversing the -26-cm width of 512 fibers (256 pairs) can be unambiguously resolved to

within 0.3 ram. Thus, to read out the four fiber layers, 64 MAPMTs with a total of 1024 channels

are required. The possibility of using the ACE-ASIC (16 channels/chip) to read out the MAPMTs

is under study. The bottom fiber hodoscope is identical to the top hodoscope.

There is a possibility that the Space Station may be pointed such that the vertical axis of

ACCESS may be pointing at angles of 10 to 20 degrees from the zenith in its torque equilibrium

attitude (TEA). This will result in an increased number of particles entering the detector from the

Earth side of the instrument. In view of this, a TOF counter that measures time of flight with preci-

sion sufficient to distinguish upward from downward moving particles is probably needed. It is

included in the strawman ZIM instrument. The sensor for the TOF counter would be identically the

same fibers and MAPMTs as used for the hodoscope. There is a single dynode signal that is

brought out for each MAPMT. One way of implementing the TOF would be to use that dynode

signal for the TOF measurement. The electronics downstream of the dynode signal is TBD.

B.2.2.3 Aerogel Cerenkov counter

A Cerenkov counter with a 3-cm-thick aerogel (n-1.04) radiator in a light-collection box is

to be mounted just below the top fiber detector. The aerogel radiators that Caltech has in-house

are 55 cm square in size. Thus the radiator would probably be a 4x4 array with the individual

radiator cut to fit. A graphite-epoxy frame will be used to support the aerogel. The aerogel

would be supported in the frame using -1-mm-thick Silgard pads for dynamic isolation. The

aerogel density is 0.22 g cm 3. The interior of the box must be white. The light box is viewed by

48 five-inch PMTs as shown in Figures B.2.1-B.2.3. The PMTs that have been assumed for the

purpose of size and weight estimates were the Hamamatsu R877-04 tube used on the high-energy

X-ray telescope experiment (HEXTE). The actual tube that would be used is TBD. The weight,

including potting and magnetic shielding, would be -1.2 kg/tube. The threshold energy for this

detector would be 2.4 GeV/nucleon, and thus could enable it to distinguish nuclei that have

energy higher than minimum ionizing from those that are on the low energy branch. Two or

three ADCs for each PMT to cover the required dynamic range would probably be required. The

aerogel detector weight estimate is 29 kg for the aerogel itself, 4.1 kg for the mounting frame,

plus -2.5 kg for adhesive and miscellaneous hardware. Table B.2-2 gives a more detailed weight
breakdown.
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Table B.2-2. ACCESS Aerogel Mounting Weight Estimate

Aerogels 55 cmx 55 cm x 3 cm

Volume 9075 cm 3 pcr block

x 16 blocks -_-145,200 cm 3 total volume

x 0.2 gm cm 3 _--29 kg (- 64 lbs) total mass

Mounting frame

Volume 2,344 cm 3

Density 1.76 gm cm 3

Mass 4.1 kg (- 9 lbs)

Additional items:

Top CFRP constraints - 1 kg

Sylgard coating - 1 kg

Assembly hardware - 0.5 kg

Total aerogel mounting weight 6.6 kg (- 15 lbs)

A NASTRAN structural analysis of the aerogel holding frame and the aerogels themselves

mounted in the frame, under 1-G traverse loading has been carried out. The modulus of the C

fiber frame was adjusted to keep the maximum center deflection at 0.3 mm without a center

support. The current frame design will support the aerogels with no handling fixture to move the

frame from storage to the counter.

B.2.2.4 Acrylic Cerenkov counter

A second Cerenkov counter located immediately below the aerogel Cerenkov counter uses

an acrylic-based radiator with a refractive index of about 1.5 in an essentially identical light-

collection box to the aerogel box. The radiator which we plan to use is composed of ultraviolet-

transmitting acrylic with Bis-multi-sideband waveshifter dye added to isotropize the light and

shift the ultraviolet component of Cerenkov light to longer wavelengths where PMTs have

greater sensitivity. The density of the acrylic material is 1.18 g cm -3. This counter would also be

viewed by 48 five-inch PMTs. The threshold energy for this detector is 0.3 GeV/nucleon.

Signals from this counter will be used as the primary charge identification for nuclei with a

saturated aerogel Cerenkov signal. We would also expect to use two or three ADCs for each

PMT to cover the required dynamic range.

B.2.3 Weight estimate

The current weight estimate is given in Table B.2-3. The instrument vertical height

estimate is given in Table B.2-4. As one can see, it adds up to 56 cm, not the allotted 50 cm for

the ZIM baseline. This is being worked at the time of writing this report.
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Table B.2-3. ACCESS ZIM Instrument Mass Estimate

PMT (cm) 16

Length (cm) 206

Width (cm) 206

Height (cm) 20 (light box)

C0 PMTs mass (kg) Total (kg)

40 52.00

radiator density (gcm 3) mass (kg)

1 25.46 25.46

box

0.5 23.00

C 1 PMTs mass (kg) detectors

40

radiator

1

1 52.00

density (gcm 3) mass (kg)

1.18 63.59 1 63.59

box

0.5 23.00

Hodoscopc PMTs

fibers

panel

mass (kg)

32 3.84

mass (kg)

Si

Electronics

Misc. Structure

1.3

thickness(cm)

0.2 3

1.3

thickness(cm)

1.27

thickness(cm)

0.05

1.27

TOTAL

0.36

2 0.06

density (gcm 3)

1.05

0.08

32 11.51

support 0.54 32 17.25

ACCESS ZIM Instrument Height Estimate_tTable B.2-4.

Detector Vertical Height (cm)

Si 3

Honeycomb 1.3

Fiber 1.3

Honeycomb 1.3

CO 22.7

C1 19.3

Honeycomb 1.3

Si 3

Fibers 1.3

Honeycomb 1.3

Total 55.8

t Aerogel and holding fixture take u 3.4 cm vertical space.

100.5

138.6

32.6

50.0

15.0

25.0

361.6
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B.2.4 Electronics system

The electronics block diagram is shown in Figure B.2-6. The ZIM electronics subsystem

provides science sensor data acquisition and control, instrument status monitoring, event trigger

information for the ACCESS facility, and C&DH functions. Interfaces to the ACCESS facility

include a data bus and command interface with the ZIM as a remote terminal, a dedicated trigger

interface for coordinating triggers with the other instruments on ACCESS, and a 120 VDC power
interface.

DETECTORS

SiARRAY

HODO MAPMTs

COPMTs

C1PMTs

St ARRAY

HODOMAPMTs L i

I
HV MONs HSKP

TEMPs A/Ds /VOLTAGES

[isu.vv,L"OPERATIONAL

HEATERS

ACCESS

HERMAL

ONTROL9

Figure B.2-6. ZIM electronics block diagram.

There will also be an interface for heater power, both active and survival (keep-alive). All
data will be transmitted over the data bus to the ACCESS command and data handler for final

packetization, storage, and telemetry. All commands to the ZIM will be via the data bus. The

ZIM central electronics unit (CEU) will be based on a central processing unit (CPU) and will

perform all command and data processing functions. We anticipate that the CEU software will

be written in the C-language. The front-end electronics will include three distinct ASICs for

sensor readout. The ASIC for the PMT pulse-height analysis will be based on a commercially

available circuit originally used in the ACE. The Si detector ASIC is currently being designed by

the California Institute of Technology, GSFC, Jet Propulsion Library, and Naval Research

Laboratory collaborators. A third ASIC will be used for the TOF system and is in preliminary

design by GSFC collaborators. The trigger logic unit will make extensive use of field-programmable

gate arrays for trigger definition and ASIC control during event readout. An extensive electronic

and light-stimulation calibration system will also be provided to monitor the performance of the
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sensors,both in testandon orbit. The high-voltage power supplies will provide bias voltages to

the PMTs, ranging from 800V - 1800V. The current requirements are minimal and these supplies

can be similar to those flown on previous missions. The nominal Si bias voltage is 100V, which

is compatible with the bus voltage of 120V.

B.2.5 Power and data

The power estimate is shown in Table B.2-5. Total power is 120 W. The power dissipation

in the Si detector is assumed to be uniform over the top and bottom Si planes. Power is dissipated

in detector leakage current and front-end electronics. For the two Cerenkov counters (CO and

CI) power is dissipated mainly in tube bases and front-end electronics. For the fiber hodoscope,

power is dissipated in tube bases and front-end electronics. The CPU, logic and power conver-

sion electronics can be located wherever it is most convenient or wherever it optimizes overall
ACCESS thermal control.

Table B.2-5. ACCESS ZIM Instrument Power Estimate

Device HVPS Channel

# Devices power (W) # HVPS power (W) # Channels Power (W) Total (W)

CO 40 0.02 4 0.2 80 0.007 2.2

C1 40 0.02 4 0.2 80 0.007 2.2

Hodoscope 64 0.04 16 0.16 1024 0.007 12.3

TOF 20.0

Si pixel 1600 0.00005 16 0.005 78400 0.0005 39.4

Digital 20.0

Subtotal 96.0

Power Conversion 24.0

Total 120.0

Several approaches have been discussed regarding the data readout. A decision is pending

further study. Preliminary analysis showed a data rate in the vicinity of 15 kbps, but this could

change.

B.2.6 Performance and results

The Si detectors in the CM are critical for obtaining individual element resolution up to the

highest charge in the UH region of the spectrum. Fortunately, the Brookhaven National Labora-

tory (BNL) accelerates gold ions to several GeV/nucleon and these can be used to study the

response of the detectors to high-energy UH nuclei. The results from one such experiment are

illustrated in Figure B.2-7, which shows the charge histogram obtained in a run in which the

primary beam was fragmented to obtain ions of all charges.

Note that individual element peaks are well resolved down to the region of the Fe peak

elements. This demonstrates, experimentally, that the Si detectors will provide the needed

charge resolution for the UH nuclei studies to be performed by ACCESS.

For a 1000-day exposure on the ISS, an estimate of the number of UH nuclei that will be

observed by the CM is shown in Figure B.2-8.
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Figure B.2-7. Charge resolution in prototype Si detectors as measured

at BNL using a 10.6 GeV/nucleon gold beam.

In the region up to Z=60 there will be several hundred events even for the least abundant

elements and many more for the more abundant species. Significant numbers of Pt and Pb nuclei

will be observed along with a few actinide elements (Th, U). Overall, these ACCESS results will

be a major advance over current measurements in this important charge range.
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B.3. Transition radiation detector

The TRD on ACCESS is intended to measure the charge and velocity (the Lorentz factor,

7) for heavy nuclei up through the Fe peak at the highest energies. The low particle fluxes at high

energy make mandatory a very large exposure (geometric factor times flight time). The largest

instruments used previously for observations at high energy, either on balloons or in space, had

exposure factors of a few m2sr days. Extrapolating from lower energy, for the major primary

nuclei C, O, Fe we require exposure factors of -12 m2sr days for measurements up to 1014

eV/particle, but -600 m2sr days up to 1015 eV/particle. The requirements for measurements of

the rare secondary nuclei are even more severe. If the B/C ratio, for example, continues to fall as

steeply above 10 _2eV/particle as it does at lower energies, (i.e. decreasing about as E°6), precise

measurements of the spectra to 1013 eV would require an exposure factor of about 60 m 2 sr days

and of about 10,000 m 2 sr days for measurements to 1014 eV per particle.
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Achieving large exposure factors requires a combination of long flight time, as is proposed

for ACCESS on ISS, and large collecting area. The detector must measure the charge of each

incident cosmic ray as well as the transition radiation signal. The need for a large area plus low

weight precludes the use of a pressurized container, such as in our previous CRN experiment

which flew successfully on the Spacelab-2 mission 67-68'26'21. Much of the TRD instrument concept

for ACCESS is derived from this previous space mission.

The TRD concept for ACCESS is sketched in Figure B.3-1 and consists of: (a) two square

scintillators on top and bottom, (b) an array of proportional tubes of approximately 2 cm diameter

and 250 cm length with alternate pairs arranged at right angles to provide measurements in both

X and Y directions, and (c) A TRD consisting of 6 radiator/detector pairs. The radiator may

consist of polyethylene fiber mats, and each detector would be a double layer of proportional

tubes.

._,.__,. _ TOP SCINTILLATOR
TUBE DIRECTION

RADIATOR 1

RADIATOR 2

RADIATOR 3

RADIATOR 4

RADIATOR 5

RADIATOR 6

Xy
X

Y

X

Y

X

Y

X

Y

_-- Bo'n'oM SCINTILLATOR

Figure B.3-1. The baseline TRD for ACCESS.

This detector can be made as large as 2.5 m x 2.5 m at a weight of about 750 kg and having

a geometric factor of 8.5 m 2 sr.

B.3.1 Transition radiation

A charged particle moving through a medium radiates energy, the most common of which

are bremsstrahlung and Cerenkov radiation. A related phenomenon is transition radiation, which

occurs when the incident particle crosses a sharp interface between two different media and

rapidly rearranges its electromagnetic field, both in intensity and spatial extent 69. In the case of a

highly relativistic (y = E/mc 2 >> 1) particle, most of the transition radiation is emitted at X-ray

frequencies. The energy dependence of the radiation intensity is very different from that of

bremsstrahlung or Cerenkov radiation. Typically, a strong increase of the transition radiation

intensity is observed with increasing particle Lorentz factor y, up to extremely high values of _'.

This feature makes x-ray transition radiation very useful for the detection of highly relativistic

charged particles and for measuring the particle's total energy.
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The intensity of the transition radiation emitted at a single interface is weak and contributes

a negligible amount to the energy loss of the particle. Therefore, for practical detector

applications 67-68'7°-72'26'21,the radiator must consist of a large number of thin foils, or a large

number of transitions. Radiation is produced at each of the interfaces. The total intensity is not

just the sum of the intensities from the individual interfaces, since interference effects must be

taken into account, as well as absorption. In the case of a single interface, the intensity per unit

frequency decreases monotonically with increasing frequency, and the total intensity is proportional

to the Lorentz factor. However, for a radiator consisting of many foils, the interference effects lead

to a frequency spectrum which exhibits strong oscillations, and to a saturation in the total

intensity 73-75. The detailed calculations show that the positions of the interference maxima in the

spectrum are governed largely by the radiator foil thickness, and that the onset of saturation is

determined by both the thickness and the spacing of the radiator foils. In order to optimize the TRD

radiator for high energies, it is necessary to tune the radiator dimensions and frequency spectrum.

The theoretical expressions for the intensity in the general case of many interfaces are quite

complicated. However, the key features may be summarized as follows: (a) X rays are emitted

at frequencies below _/r_, where Oaris the plasma frequency of the radiator material; (b) the total

emitted transition radiation increases with particle energy, approximately linear with 7, up to a

saturation value, % which depends upon the radiator material (0_), the radiator thickness and the

size of the gaps between the radiator layers; and (c) The transition radiation yield is proportional

to Z 2 for a heavy particle. Explicit predictions must involve detailed theoretical calculations 74-75.

Experimentally, the observed quantity is most often the intensity integrated over all angles for

which there are analytic treatments available 7677. For other situations, e.g. non-uniform radiator

thickness or variable spacings, it is necessary to integrate the equations numerically.

One of the advantages of transition radiation is that the response depends solely on the

Lorentz factor 7 of the particle, and therefore can be perfectly well studied with beams of electrons

and pions that are readily available at accelerators. Transition radiation is a purely electromagnetic

effect and has been shown to scale perfectly with Z 2 of the primary particle. The calibration of the

response for heavy nuclei can, therefore, be established without ambiguity at accelerators. Thus,

radiator concepts can be readily studied experimentally as well as theoretically.

An example of the transition radiation response is shown in Figure B.3-2, where the data

points represent calibration measurements made at accelerators or from CRN flight data. The

signal was recorded in a multi-wire proportional chamber (MWPC). Note the Y-axis is signal/Z 2

which allows heavy ion data to be included on the same plot. The radiator in this case was a

collection of polyethylene fibers (much like the fiber filling in some types of ski jackets) which

provided a random set of interfaces to the particle.

The transition radiation X rays undergo photoelectric conversion in the MWPC to produce

the transition radiation signal. This signal is superimposed upon the ionization signal of the

particle. The straight line in the figure shows the ionization signal (measured by removing the

radiator). The transition radiation signal becomes observable for 7 > 400 and increases with 7

until saturation is reached around 7 = 4 x 104. Thus, the response curve of the TRD is

characterized by a signal due only to ionization loss at low energies, but increasing rapidly for 7 >

400. This increase with increasing 7 makes possible an accurate measurement of 7, i.e. of the

energy. In units of total energy per particle, the Lorentz factor range 400 < 7 -< 40,000

corresponds to about 6 × 1012 to 6 × 1014 eV for oxygen, and 2 x 1013 to 2 × 10 x5eV for Fe.
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Figure B.3-2. Transition radiation signal in a MWPC as a function of the Lorentz factor, y.

The yield for singly charged particles may be only a single photoelectron in the detector,

and is subject to large fluctuations, which can be studied at accelerators. In flight, however, the

yield will increase by Z 2 for heavy nuclei, thereby reducing fluctuations. Moreover, the design of

Figure B.3-1 envisions many independent measurements of the transition radiation signal in the

six radiator and detector layers shown. This will allow fluctuations to be analyzed from the

actual flight data.

In order to determine the response of the detector quantitatively, a full Monte Carlo

simulation of the TRD has been performed. The simulation assumes an isotropic flux of nuclei,

reconstructs the particle trajectories, determines the ionization signals in each tube layer, and

determines the X-ray signals deposited in the tubes, assuming Poisson fluctuations in the number

of photons. The simulation uses the calibration curve of Figure B.3-2 for the yield of X-rays for

each particle trajectory through the radiator stack. The result is shown in Figure B.3-3 for C and

Fe nuclei at three different values of y.

At low 7, the ionization signal is observed and is very sharp. As y increases, the total signal

increases with the addition of the transition radiation component. From the widths of these

distributions, the energy resolution of the detector, which depends on both Z and 7, can be assessed.

For a given application, devising a radiator plus detector system to cover the needed range

in y involves optimizing many parameters, i.e. radiator material and structure, overall thickness,

size of detectors, and composition of the gas. This is a task that is under way for ACCESS and

involves both theoretical calculations and accelerator testing of prototype devices.
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B.3.2 Detector design and construction

The centerpiece of this module is the TRD for energy measurements. Without a pressurized

shell as was used for CRN, we cannot utilize MWPCs or drift chambers, since, pressurized at one

atmosphere, these devices would not withstand external vacuum. To resolve this problem, the

TRD design utilizes an'ays of cylindrical single wire proportional tubes. Such tubes, with thin

walls of aluminized Mylar, are inexpensive to make, simple to operate, and, most importantly,

can easily work at zero outside pressure. These tubes are quite rigid when pressurized, can be

several meters long, and can be easily arranged to form lightweight arrays of several square meter

area. A sketch of such a proportional tube-radiator subassembly is shown in Figure B.3-4.

Each proportional counter tube has a laminated Mylar wall made conductive with an

aluminum coating on the inside. The tube diameter is 2 cm, and its length is 2.5 m. A 50/am

thick stainless steel wire along the axis of the tube forms the anode of the counter. Filled with a

Xe/methane mixture, these tubes operate in the proportional regime at an absolute pressure of 1.5

atmosphere. These tubes are extremely lightweight, and are commercially available at relatively

low cost. They are manufactured by spiral-winding, and laminating, two or more strips of plastic

foil, and are available in arbitrary dimensions, with high-precision mechanical tolerances.

Laboratory tests have shown that: (a) no gas leaks or outgassing problems compromise their

performance as proportional counters at low gas flow rates; (b) the AI coating provides good

electrical conductivity, with a typical resistance of 100 _ over 5 m length; (c) the tube walls are

transparent to low energy X-rays as required for the detection of transition radiation: the measured

attenuation of X rays in a 50-1am-thick tube wall is 9% at 6 keV, and 4% at 8 keV; and (d) the
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tube walls withstand over-pressures of several atmospheres; even for tubes with the lowest wall

thickness (50 gm) the burst pressure is larger than 5 atmospheres.

(PROPORTIONAL TUBE)

Figure B.3-4. Radiator and proportional tube assembly.

The consequence of using the proportional drift tubes for the ACCESS mission is that the

payload must include a gas supply and a circulation system, if a flow rate is to be maintained.

The size of this reservoir will be determined by the exact level of the (small) gas leakage, both

from around the end caps of the tubes and through the walls of the tubes. This gas reservoir will

require a pressurized tank that must be safety-certified for launch on the Shuttle. Whether or not

a tank refill will be necessary during the life of the ACCESS mission is one of the important

issues for study as the project develops.

A preliminary baseline concept for a gas-handling system for the ACCESS TRD module is

shown in Figure B.3-5 and involves a circulating pump to maintain the flow rate through the
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Figure B.3-5. Gas system for TRD proportional tubes.
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tubes as well as in-line filters to remove any contaminants that are introduced into the gas mixture.

As long as the leak rate is low, such a system could keep the Xe-methane gas operating for the
life of the mission.

Alternative scenarios for the gas system involve operation in a fill-purge-refill mode rather

than a recirculating system. A trade study will be needed to decide upon the best method for

handling the gas system requirement for the TRD.

The use of a gas mixture such as Xe-methane, however, provides a thermal constraint. At

low temperatures (about 0 °C) the two components of the gas can separate. Once this has

happened, they do not readily remix even when the temperature is increased. Thus, the thermal

environment for the gas reservoir must be designed carefully, and, probably, heaters will be

necessary to avoid component separation in the gas.

The other detectors involved in the TRD module are the top and bottom scintillators. Here

we envision a relatively simple design such as is sketched in Figure B.3-6.

Figure B.3-6. TRD scintillator concept.

The scintillator is divided into four pieces, each side of each piece being connected to a bar

of wave-shifter material. Both ends of each wave-shifter bar are viewed by PMTs, indicated by

the dark sections of the bars in Figure B.3-6. These PMTs are read out via preamps and shapers

(open squares) and fast summing amplifiers (closed squares with open dot in center). These

electronics are located on the edges of the detector, and signals are passed to the digital electronics,

which may be located nearby.

B.3.3 Charge and trajectory measurements

The particle charge is first measured by the top and bottom scintillators with an expected

resolution of about a quarter charge unit. Comparison of the top and bottom scintillators

determines if a particle has fragmented in traversing the TRD module.
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Charge can also be measured from the ionization signal in the proportional tubes, particu-

larly those at the top of the stack. However, the ionization signal increases logarithmically with

increasing 7 (the "relativistic rise"), amounting to roughly a 50% increase in the ionization signal

from minimum ionizing to highly relativistic particles. This increase is a desirable feature since

it provides a means of removing minimum ionizing particles, e.g. an event will only be accepted

if a TRD signal is accompanied by a pulse height in the proportional tubes well above the minimum

ionizing level. As the flux of low-energy cosmic rays traversing the instrument is much higher

than the flux of those in the TRD region (7 > 400), this discrimination against low-energy

background is important.

On the other hand, the relativistic rise compromises the uniqueness of the charge determi-

nation since a highly relativistic particle of charge Z may not be distinguishable from a minimum

ionizing particle of higher Z, if just the tubes are used for charge identification. However, the

relativistic rise in a solid, e.g. the scintillator, is much smaller than in a gas (the "density effect"),

so the scintillator is able to resolve the ambiguity. Thus, by combining measurements from the

scintillator layers with the proportional tubes, an accurate charge measurement for all of the

elements can be obtained.

It is also necessary to know the trajectory of the particle through the instrument in order to

correct for the angle of incidence and the corresponding actual pathlength in the detectors. Here

information from the CM (ZIM) at the top can be helpful for the heaviest events.

The proportional tubes are arranged, alternately, in orthogonal directions to permit trajectory

determination in the TRD module. Using a tracking algorithm based on the fact that, within

fluctuations, tube signals are proportional to the pathlength within each tube, the trajectory which

best reproduces the signals found in all tubes can be determined. Simulating this procedure with

a Monte Carlo code, assuming a stack of six double layers of tubes, as in Figure B.3-1, results in

trajectory reconstruction that is accurate to about 0.4 mm in both the X- and Y-directions for C

nuclei. For Fe, the reconstruction (one sigma) improves to about 0.3 mm. This excellent trajec-

tory reconstruction allows us to normalize the total ionization signal measured in the stack to the

total pathlength traversed by the particle in order to determine the specific ionization dE/dx, and

therefore the charge Z of the particle.

B.3.4 Readout, electronics, power, and data

There are two types of detectors to be read out in the TRD module, the PMTs associated

with the scintillators and the proportional tubes. There are only 64 PMTs to be analyzed, which

can be accomplished with standard electronics. There are many more proportional tubes to

sample, and these require the use of ASICs to conserve power. A typical ASIC for the proportional

tubes may involve a preamp, shaping amp and track/hold circuit. The held pulse is then shifted

out to an ADC circuit for digitization. A schematic block diagram of the electronics for the TRD

is shown in Figure B.3-7, with the necessary location of the modules indicated at the bottom.
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TRD Electronics Block Diagram
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Figure B.3-7. Electronics block diagram for baseline TRD on ACCESS.

The estimated power required for the TRD is summarized below:

REGULATED POWER ESTIMATE:

64 PMT @ 0.12w

16 Scin. preamp & shaper

8 Scin. fast sum amp

20 Prop. Tube linear ass'y

4 Prop. Tube ADC ass'y

1 Scintillator rack

1 Main rack

SUB -TOTAL

1 Power Converter

(assume 75% efficient)

7.7

1.6

1.2

32

48

14

60

165 W

55 W

TOTAL 220 W

To this must be added the power involved in (a) the gas handling system and (b) heaters (if

needed) for thermal control. These latter remain undefined at this time, so power estimates are

not possible.
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Theestimatedeventratefor theTRDmoduleis about100eventsper second.Eachevent
readoutrequiresabout2100bits. Thisgivesaneventdatarateof 210kbps. To thismust be
addedhousekeepingdata,rates,calibrationframesandthe like whichall-togetherareestimated
to addanother2 kbps. Thus,theanticipateddataratefrom theTRD moduleis212kbps.

B.3.5 Anticipated results

The baseline TRD for ACCESS will measure events with Z > 3. Projecting the results

from a 1000-day exposure of the instrument on the ISS, Figure B.3-8 shows the expected results

for the B/C ratio, compared to lower energy results and to two theoretical curves for different

models. Even if the ratio continues to fall as in the "leaky box" model, the ACCESS data can

trace the energy dependence to nearly 1013 eV/nucleon. (It should be noted that Figure B.3-8

shows but one of the several secondary-to-primary ratios that ACCESS will be able to measure.)
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Turning next to the primary elements, Figure B.3-9 shows the type of results anticipated for

the CNO nuclei and the Fe group. Here, again, two models are shown, the leaky box and the

residual pathlength, the latter being similar to the upper curve in the previous figure. In addition,

all-particle spectrum measurements are indicated, and the scale is total energy per particle. Error

bars on the calculated values (large solid points) are statistical, demonstrating that the number of

events observed by ACCESS will not limit the interpretation. Thus, ACCESS data will be able
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to resolvethediscrepanciesin thepreviousresultsandtracetheenergyspectraof theelementsto
closeto thekneeregionof theall-particlespectrum.
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Figure B.3-9. Potential results for CNO and Fe from the TRD on

ACCESS compared to previous results and models.

B.4. Composite detail of the ACCESS instrument

The three experiments, CAL, TRY), and CM (ZIM), together form the overall ACCESS

instrument. A conceptual cross section of the instrument is shown in Figure B.4-1.

This composite was created by the University of Maryland group 78 for the ACCESS simulation

team. It is based upon the USS/ACCESS configuration (see Figure 14 and Figure E.1) and does

not include some of the evolution in the experiment designs that has occurred since beginning

this study. However, Figure B.4-1 provides a perspective of the overall ACCESS instrument

concept that is the basis for this accommodation study•
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Figure B.4-1. Cross section of the composite ACCESS instrument.
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Appendix C. ISS Assembly Sequence

For reference, the following is a flight-to-flight detail of the currently planned ISS assembly

sequence [SSP-50110, Rev. Db]. Phase 1 was the joint U.S.-Russian Mir program. See the ISS

10/2/98 planning reference at the Assembly Sequence website.

Launch Right

Date

Nov-98 1A/R

Dec-98 2A

May-99 2A.I

Jtd-99 IR

Aug-99 1P

Aug-99 2A.2

Oct -99 2P

Oct -99 3A

Dec-99 4A

Jan-00 2R

Feb-00 5A

Feb-00 3P

Mar-00 5A.1

Apr-00 4P

Apr-00 6A

Jun-00 2S

Jul-00 7A

Jul-00 5P*

Aug-00 4R*

Aug-00 7A. 1*

Sep -00 6P*

Oct -00 7P*

Nov-00 UFI *

Dec-00 8P*

Dec-00 3S*

Jan-01 8A*

Mar-01 UF2*

May-01 9A*

Jul-01 9A.I*

Aug-01 11A*

TBS 3R*

Sep-01 12A*

TBS 5R*

Dec-01 1ZA.I*

Jan-02 13A*

Apr-02 10A*

May-02 10A.I*

Delivered _ments

FGB (Launched on PROTON launcher)

Node 1 (1 Stowage r'ock), PMA1, PMA2, 2 APFRs (on Sidewalls)

Spacchab Double Cargo Module, OTD (on Sidewall), RS Cargo Crane

Service Module (Launched on PROTON launcher)

Progress MI

Sp_ab Double Cargo Module

Progress M I

ZI truss, CMGs, Ku-band, S-band Equip, PMA3, EVAS (_.,P), 2 Z1 DDCUs (Sidewall)

P6, PV Army (6 battery sets) / EEATCS radiators, S-band Equipment

Soyuz - TM - (a)

Lab (5 Lab System racks), PDGF (on Sidewall)

Progress M

lab Outfitting (Sy s mzks, RSRs), (on M PLM)

Progress M 1

Lab Outfitting (Paylo_ Racks, RSPs, RSRs) (on MPLM), UHF, SSRMS (on SIP) - (b)

Soyuz - TMA

Airlock, HP gas (2 02, 2 N2) (on SLDP)

Progress M

_gCorrtpartment 1 (DC1), RSCar_ Crane

4 RSRs, 6 RSPs, ISPRs (on MPLM), OTD, APFR (on Sidewall)

Progress M 1

Progress M 1

ISPRs, 2 RSRs, 2-RSP-2s (on MPI_aM), Spares Warehouse

Progess M 1

Soyuz - TM

SO, MT, GPS, Umbih'cals, A/L Spur

ISPRs, 3 RSRs, 1 RSPs, I RSP-2s, MELFI (MPLM), MBS, PDGF (Sidewalls)

SI (3 rods), TCS, CETA (1), S-band

Science Power P_ form w/4 solar arrays and ERA

PI (3 Fads), TCS, CETA (1), UHF

Universal Doddng Module (UDM)

P3/4, PV Array (4 battery sets), 2 ULCAS

Docking Comp_trrent 2 (DC2)

ISPR, 3 RSRs, I-RSP-2s, 1 RSP-1 (MPLM), P5, R,_di_or OSE

$3/4, PV Army (4 b_tery sets), 4 PAS

Node 2 (4 DDCU racks), NTA (on Sidewall)

Propulsion Module

* - Sequence and schedule after Flight 7A are under review.

(a) - 3 Person Pemmnent International Human Presence Capability

(b) - Microgravity Capability
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Appendix C. ISS Assembly Sequence
(continued, page 2)

Launch Right
Date

Jul-02 l J/A*

Sep-02 IJ*

TBS 9R*

Oct-02 UF3*

Nov-02 UF4*

Feb-03 2J/A*

Mar-03 14A*

TBS 8R*

Jun-03 UF5*

Ju 1-03 20A*

TBS 10R*

Sep-03 17A*

Oct-03 1E*

Dec-03 18A*

Jan-04 19A*

M ar-04 15A*

Apr-04 UF6*

M ay-04 UF7*

Jul-04 16A*

Delivered Bements

ELM PS (4 Sys, 3 ISPRs, 1 Stow), 2 SPP SA w/truss, Conform. Shields (ULC)

JEM PM (4 JEM Sys racks), JEM RIMS

Docking & Stowage Module (DSM) (FGB module type)

ISPRs, 1 JEM rack, 1 RSP, 1 RSP-2 (on MPIA/I), 1 Express Pallet w/PL

Truss Attach Site P/L, Express Pallet w/Payloads, ATA, SPDM (SLP)

JEM EF, ELM-ES w/Payloads, 4 PV battery sets (on Spacelab Pallet)

2 SPP SA w/truss, 4 SM MMOD Wings (ULC), Cupola (SLP), Port Rails (ULC)

Research Module # 1 (RM-1)

ISPRs, 1 RSP, 1 RSP 2 (on MPLM), Express Pallet w/Payloads

Node 3 (2 Avionics, 2 ECLSS racks)

Research Module #2 (RM 2)

] Lab Sys, 4 Node 3 Sys, 3 CHeCS, 2 RSP-2s, ISPRs (MPLM) - (c)

APM (5 ISPRs)

CRV #1, CRV adapter - (d)

5 RSP-2, 1 RS1L ISPRs, 4 Crew Qtrs. (on M PLM ), $5 - (e)

$6, PV Array (4 battery sets), Stbd MT/CETA rails

3 RSP-2s, 1 RSP, ISPRs (on MPLM), 2 PV battery sas (on SLP)

Centrifuge Accommodations Module (CAM), ISPRs (TBD)

Hab (6 Hab sys racks, 2 RSRs, ISPRs) - (f)

* - Sequence and schedule after Flight 7A are under review.

(c) - 6 Person USOS F_I2LSSCapability

(d) - 6 Person Permanent International Human Presence Capability
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Appendix D. Space Station Program and Space Shuttle
Documentation

The following SSP documentation should be retrievable as a download from the Program

Automated Library System (PALS) website in Appendix K.

Space Station Program (SSP)

SSP 30000

SSP 30233

SSP 30237

SSP 30238

SSP 30240

SSP 30242

SSP 30243

SSP 30245

SSP 30242

SSP 30425, Rev. B

SSP 30426

SSP 30482

SSP 30512, Rev. C

SSP 30513

SSP 41000

SSP 42131

SSP 50005

SSP 50110

SSP 50184

SSP 50513

SSP 52000-A04

SSP 52050

SSP 57000-IRD-TAP

SSP 57000-PAH-LSP

SSP 57000-PAH-TAP

SSP 57003

SSP 57010

SSP Definitions and Requirements

SS Requirements for Materials and Processes

SS Electromagnetic Emission and Susceptibility Requirements

SS Electromagnetic Techniques

SS Grounding Requirements

SS Cable/Wire Design and Control Requirements for Electromagnetic

Compatibility

SS Requirements for Electromagnetic Compatibility

SS Electrical Bonding Requirements

Space Station Cable/Wire Design

SSP Natural Environment Definition for Design

SS External Contamination Control Requirements

Electrical Power Specification and Standards

SS Ionizing Radiation Environment for Design

SS Ionizing Radiation Environment Effects Test and Analysis

Techniques

System Specification for the International Space Station

$3/P3 to AP/UCC ICD (under revision, CR 1135)

International Space Station Flight Crew Integration Standard
Multi-Increment Manifest Document

HRDL Physical Media, Physical Signaling and Protocol Specification

Payload Command and Data (C&D) Integration Data File
Software ICD

IRD, Truss Attached Payloads

PAH, Launch Site Processing

PAH, Truss Attached Payloads

Attached Payloads IRD

Payload EMI/EMC Control Plan
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Appendix D. Space Station Program and Space Shuttle
Documentation

(continued)

Shuttle Program (NSTS)

NSTS-07700, Vol. XIV

Appendix 1
NSTS 1700.7B

NSTS 1700.7B, ISS

Addendum

NSTS/ISS 18798B

NSTS- 13820

NSTS/ISS 13830C

NSTS- 14046

NSTS-21000-IDD-IS S

JSC 73642

JSC SC-C-0005C

KHB 1700.7B

Space Shuttle System Payload Accommodations

Safety Policy and Requirements for Payloads Using the Space

Transportation System

Safety Policy and Requirements for Payloads Using the

International Space Station (ISS Addendum)

Interpretations of NSTS/ISS Payload Safety Requirements

Implementation Procedure for NSTS Payloads System Safety

Requirements

Payload Safety Review and Data Submittal Requirements For

Payloads Using the Space Shuttle/International Space Station

Payload Interface Verification Requirements

International Space Station Interface Definition Document

Space Shuttle Payload Ground Safety Handbook

ISS Telecommunications, Ground Segment

HOSC-DOC-237, Rev. A

MSFC-SPEC-2123B

ISS HOSC: Payload Commanding (Marshall Whitepaper,

November 17, 1998)

Payload Data Services System (PDSS) Development Specification

(Fall, 1998)

Military Standards

MIL-STD-5G

MIL-STD-210

MIL-STD-461

MIL-STD- 1576

MIL-STD-1553b

MIL-STD- 1776

MIL-STD-2073

Military Handbook 5G

Climatic Extremes for Military Equipment

Electromagnetic Emission and Susceptibility Requirements for the

Control of Electromagnetic Interference

Electro-Explosive Subsystem Safety Requirements and Test

Methods for Space Systems

Digital Time Division Command/Response Multiplex Data Bus

Air Crew Station and Passenger Accommodations

Standard Practice for Military Packaging
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Appendix E. ACCESS Structural Options

ACCESS on USS
Integration Option 1

Total Average Payload Mass Estimate: 4968 kg (10952 Ibs.)

Overall appro_0mate weights end d_'nenszons for the preliminary structural assessment of

the ACCESS Exbenment integrated on the e_c.=ling Unique Support Structure (USS)

des, gn developed for the Alpha Magnelic Spectrometer tAMS) Expanment

I " 1I. 'l

2.3 m 1.2 m

Transltion

Rad*ation

Detector

(TRD)

500 kg ._

!_ 0.5 ml

_ _L___.._J 03*m

I" t0m "l
All envelopes are squares

_n the Y-Z plane

All envelopes are squares

in the X-Y p_ne.

Z

Orbiter coordinate system

+X is out of the paper

There _ another 200 kg of avionics, thermal control system, gas

rasupply system, debns shzeids, and contingency mass for a total

ACCESS Expenment mass of 3850 kg (8488 It)s)

For ihzs preliminary assessment, all mass is assumed to be unrformly

distributed througheut each of the envelopes shown,

it8 to 163 kg (260 to 359 It)s) *s required to adapt ACCESS to the USS.

132 to 159 kg (291 to 351 It)s) is required to make the USS deployable

and to attach it to the PAS With an existing USS weight of 832 kg

(1834 Ibs) the total integration hardware mass is 1082 to 1154 kg (2385

to 2544 Ibs) T_erefore the total ACCESS Paytoad mass ts 4932 to

5004 kg (t0873 to 11032 Ibs) wrth an average of 4968 kg (10952 Ibs)

ACCESS on ECS
Integration Option 2

Total Average Payload Mass Estimate: 5041 kg (11113 Ibs.)

(Using total weights from the payload on structures 1, 6, and 9.)

2.5 m

E

8

25Om

Charge Module

360 kg

Transition

Radiation

Detector

(TRD)

750 kg

I i luu rn

Sikcen Mstnx &

Graphite Targets

950 kg

BGO

2000 kg

l= 1o m

I
T
0.5 m

?
1.2 m

0.5 m

O.tm

All envelopes are sql.mms

m the Y-Z plane

Orbiter coordinale system.

+Z s out of the paper

There is another 140 kg of awonc.s, thermal control system, gas

rssupply system, 0eOns ztfiek:ls, and centingency mass for a total

ACCESS Experiment mass of 4200 kg (9259 Ibe).

For this preliminary assessment, all mass iS assLimeO to be

unilormlv distributed throughout each of the envelopes shown.

An ECS to cam/this exbenmeht mass would weigh 658 to 819 kg

(1450 to 1805 Ibs). 102 to 114 kg (228 to :)51 Ibs) is required to

make the ECS deployaole and to attach it to the PAS. Therefore

the total ACCESS Paytoad mass is 4960 to 5133 kg (10934 to

11316 Ibs).

Figure E.I. The four options addressed in the JSC/Louisiana State University (LSU)

Accommodation Study.

136



Appendix E. ACCESS Structural Options
(continued)

ACCESS on ECS

Total Pay|oad Mass Estimate: 6014 kg (13232 Ibs.)

Charge Module

36O kg

-r-
0.5 m

-
Transition

Radiation

Detector 1.2 m

('TRD) 0._5 m

750_

0.3 m

T

AJ_ envelopes are squares

_n Ihe Y-Z p_ne

2.5 m

I Integration Option 3 I

zT---¥
X

Orbrcer ooorclinate system

+Z iS Out of the paper

There is another 250 kg of avionics, thermal control system gas

resupgly system debrts shvslds, and contingency me_.Ls for a tota_

ACCESS E:,q3anmant mass of 5031 kg (11069 Ibs)

For this pretimtnary assessment, all ms_s§ __ _a_s_sumed!9 _De

unrformly cl_t=r_ulod throughout each of the envelopes shown

An ECS to carry th_s experiment mass woul0 we=gtl 865 kg (1903

tbs) 118 kg (260 ibs) is required to make the ECS daploya0ie and

to attach it to the PAS Therefore the Iotal ACCESS Payload

mass Is 6014 kg (13232 Ibs)

ACCESS on ECS
Integration Option 4

Total Average Payload Mass Estimate: 6807 kg (15006 Ibs.)

(Using total weights from the payload on structures 1.6. and 9.)

l
2.5 m

2.50 m

Charge Module

360 kg

Transition

Radiation

Detector

miD)

750 kg

I. I

3-
0.5 m

1.2 m

0.5 m

l
0.31m

_I en'_k:_oes are Iquares

,_ the Y-Z plane

z1 Y
X

Orbrter coordinate system.

+Z is out of the paper,

There is another 250 kg of avioncs, thermal control system, gas

resuppPy System, debris shields, as0 o_,ntingency mass for a total

ACCESS Expsnment mass of 5876 kg (12954 Ibs).

For t_s prelimina_ assessment, all m_l_is is {kssume_ to be

unitormlv distnbuted throughout each of the envelopes shown

A,n ECS to carry this experiment mass '_ould weigh 758 1o 913 kg

(1672 to 2012 Ibs) 109 to 121 kg (240 to 267 it)s) is required to

make the ECS deployable and to attach it to the PAS Therefore

the total ACCESS Payload mass is 6743 to 6909 kg {14666 to

15233 Ibs),

Figure E.I. (continued) The four options addressed in the JSC/LSU Accommodation Study.
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Appendix E. ACCESS Structural Options
(continued)

STRUCTURE1 STRUCTURE 2 STRUCTURE 3

....... _:.__ ,, :::_ii._iiii_i___

'-.. /

STRUCTURE 4 STRUCTURE § STRUETUR[ 6

/:. _, ,_" _.. _:_.. /I

....' ,,_.,,.}ii_.... ....', .............._ii_,_...... _.- // ___,_,_: _-_>

STI;iUCI'URE ? STRUCTUR£ 8 STRUCTURE 9

STRUCTURE 10
STRUCTURE 13

Figure E.2. The thirteen Option 2 ECS structures analyzed under the JSC/LSU

Accommodation Study (with emphasis on Structures 1, 6, and 9). Options 3 and 4 are very

similar. Not shown is Structure 12, which is much like Structure 7.
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Appendix F. ISS CG Restraints

Shell for 11000 lbs.
Z_z < 78.21-2.34E-04*abs(Xcg)-l.09E-02*X_g2-2.70E-03*abs(Yc_)-4.85E-02*Yc 2+5.79E-06*X_ 2*Yc 2

Xcg

Figure F.1. CG envelope.

40-

N
30"

Xcg Ycg

Figure F.2. CG envelope.
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Appendix F. ISS CG Restraints (continued)

40-

N
30-

Xcg

PAS CG

Z-axis

(inches)

Figure F.3. CG envelope.
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200

175' 19,ooo sz.41
17,0_ 6289 ?
15,000 s4 16
13,000 s988

] 50' 11,ooo 78.2 i
9,000 90 77
7,000 11014
5,000 1439_
3,06Q 22213

]25

I00

75

50 [Acceptable Region] I

25

5,000 I0,000 15,000 20,000

Maximum Payload Weight At $3 and P3 PAS Site

(Ibs)

Figure F.4. Weight-and-balance problem for ISS attached payloads, prior to CR 1135,

(assuming Xcc = YcG = 0 in PAS coordinates).
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Appendix G. ISS Environments

There are a number of environments that affect the ISS payload. These can be

distinguished according to mission phase: (1) ground operations; (2) ascent, orbital payload

transfer and deployment; (3) on-orbit operations; and (4) payload retrieval, descent, and landing.

The on-orbit environments relevant to ISS payload design include the following:

• Gravitation

• Neutral atmosphere

• Thermal

• Plasma

• Ionizing radiation

• MMOD

• EMI

• Contamination

• Acoustics, stress, and vibration

A general ISS baseline reference on this subject is SSP 30425, available for download from

the PALS website.

Gravitation

At altitudes of 350-500 kin, ISS will orbit through the Earth's gravitational field, with

perturbations from the Moon and Sun. Due to the pear-shaped and irregular form of mass

distribution in the Earth, the ISS orbit precesses in space as a result of the gravitational torques

acting upon its orbital angular momentum. As this happens, the ISS attitude control system

attempts to maintain its own pointing attitude by modulating its resultant angular momentum

using control moment gyros (CMGs). The dynamic consequence of all external torques such as

gravitation, the ISS instrinsic mass properties (such as moments of inertia and total weight), and

the desired pointing attitude in inertial space, is a TEA.

Relevant documentation is: Any publication on orbital dynamics, the U.S. Skylab Program

(CMGs), and the Russian Mir Program (gyrodynes).

Neutral atmosphere

As the ISS moves about LEO, it interacts with the Earth's upper tenuous atmosphere and

experiences effects that influence payload structural design, material selection, and operations.

Two features of this atmospheric environment are particularly relevant: (1) atmospheric density;

and (2) atmospheric composition. They both vary as a function of solar activity and altitude

above the Earth. Density generates orbital drag and decay which reduce altitude, in addition to

external aerodynamic torques which the ISS attitude control system must account for in its TEA.

To compensate for the orbital decay, the ISS orbit (Figure G. 1) will undergo a periodic re-boost
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(FigureG.2). Atmosphericcomposition(FiguresG.3andG.4)manifestsitselfasmolecularand
atomiccomponentswith differing scale-heightsasafunctionof solaractivity. Thepresenceof
atomicoxygenproducesatmosphericerosionof payloadmaterial,its oxidation,andits surface
contaminationover longperiods.

51.6" Inclination

Shuttle Launch and

Primary Landing Site

~ tat. 52° N

+ LaI. 52+ S

Figure G.1. Geographic perspective of typical ISS groundtrack.
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Figure G.2. Generic ISS re-boost profile, using a previous assembly sequence and launch

ephemeris.
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Figure G.4. Typical atmospheric mass density profiles at high and low solar activity.
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Relevant documentation is: SSP 30425, Rev. A and B; NASA TM 100351 ; the Marshall

Engineering Thermosphere (MET) model; the Mass Spectrometer Incoherent Scatter (MSIS)

model; and Global Reference Atmosphere Model (GRAM).

Thermal

The on-orbit ISS thermal environments are natural and induced. Natural sources of thermal

variation and fluctuation include the sun (solar constants for cold, mean, and hot solar activity),

the Earth's albedo, the Earth's thermal radiation, and deep space temperatures. These are all

influenced by ephemeris (season and time), solar cycle, cloud cover, and orbital state vector

(inclination and altitude). The consequence is payload surface temperature variation, thermal

stress, heat rejection, and electrical power fluctuation. Induced sources of thermal variation

derive from the coupled thermal performance of the ISS constituents themselves. These range

from orbital characteristics (flight attitude and state vector) and ISS geometry, to material thermal

and optical properties (absorptivity, emissivity, and transmissivity). Examples include thruster

plume impingement, contamination of payload thermal coatings, and Shuttle Orbiter shadowing.

Relevant documentation and modeling is: SSP 30425, Rev. B; the MET model; the MSIS

model; and the GRAM.

Plasma

The on-orbit ISS plasma environment is likewise natural and induced. LEO is a complex

state of ionized gas (plasma) generating electric fields and electric potentials (and voltages)

which affect the ISS performance and behavior. Natural sources (Figure G.5) include the Earth's

trapped radiation belts, auroral charging, equatorial and meridional electrojets, the Earth's

magnetosphere and plasmasphere, and the presence of the Earth's geomagnetic field. There also

is a day-night effect as the ISS orbits in and out of a daytime and nightime plasma environment

each of its orbital periods. Induced plasma sources include ISS and Shuttle thruster firings,

thruster plumes, and venting of gases. In order to control the electric potential variations of this

complex plasma environment, the ISS electrical system includes a plasma contactor, which

attempts to equalize potential gradients appearing across it, as well as a thorough electrical

grounding system. The natural and induced plasma environments are coupled together by means

of well-understood space plasma physics: (1) plasma waves and magnetohydrodynamics; (2)

sparking, arching, and sputtering; (3) spacecraft charging in the auroral and SAA (South Atlantic

Anomaly) zones; (4) spacecraft corona and electrostatic discharge; (5) spacecraft rendezvous and

docking; and (6) geomagnetic electrojet effects. All of these combined plasma phenomena

(natural and induced) contribute to payload material degradation and enhanced EMI. Risk

mitigation is the plasma contactor which attempts to control the ISS potential differences to

within +_40 volts of the ionospheric plasma potential, and grounding architecture.

Relevant documentation is: JGR 97, 2985 (1992), Ref. 80; JGR 90, 11009 (1985), Ref. 81;

SSP 41000; SSP 30425; SSP 30420; SSP 30240; SSP 30245; IGRF (Ref. 83); IRI (Ref. 84); AP-

8 and AE-8 (Ref. 85); EWB 3.0 (Ref. 86).
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Figure G.5. Earth's plasma environment, adapted from Heikkila 79.

(reprinted by permission of the AGU)

Ionizing radiation

ISS payloads are continuously exposed to charge particle radiation and cosmic rays (ionized

nuclei) which vary with solar activity (Figure G.6) and geomagnetic activity (Figure G.7). Sources

include: (1) inner trapped radiation belts of the Earth (Figures G.8-G.11); (2) Galactic cosmic

rays; and (3) energetic solar event particles. The consequences include material degradation,

electronic microcircuit and avionics single-event effects (SEEs), human radiation exposure, and

payload experiment anomalies. SEEs include single-event upset (SEU), transients, latch-up,

burnout, and gate rupture. The highly energetic events can even result in total avionics failures

and partial or total loss of payload electronic circuitry functions. Risk mitigation against space

radiation includes some shielding (- 250 mils) as beneficial for the low-energy particles (Figures

G. 12-G. 14), ops work-arounds (such as power-off during energetic solar events or possibly

presence in the SAA), and multipath redundancy design in avionics such that hard failures are

compensated for and are multi-fault tolerant. Figures G.6-G.14 are adapted from SSP 30512C.

Relevant documentation is: Messenger & Ash, Single Event Phenomena (Ref. 39); JGR

98, 13281 (1993), Ref. 82; SSP 30000, Sec. 3, M1; SSP 30420B; SSP 30425B; SSP 30512C;

SSP 30513A,B; SSP 50005; IGRF (Ref. 83); IRI (Ref. 84); AP-8 and AE-8 (Ref. 85); EWB 3.0

(Ref. 86).
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Figure G.6. Solar flux model (F10.7) over the mean solar cycle.
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Figure G.7. Geomagnetic activity index (Ap) over the mean solar cycle.
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Figure G.12.
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Relevant computer transport codes and radiation simulation models include: IRI86 and

IRI90, AP8MAX/MIN, AE8MAX/MIN, BREM, PDOSE, HZETRN, VETTE, CREME, Proton

Vector Flux model, CADRays, IBM SEU Code, Shieldose, GEANT, and FLUKA.

Relevant websites include Boeing's Radiation Effects Laboratory.

Micrometeoroids and orbital debris

Orbiting in LEO, the ISS will undergo collisions with natural micrometeoroids and man-

made orbital debris (space junk) left over from spacecraft collisions and explosions. Highly

improbable catastrophic collisions are not considered here. However, NASA's surveillance

programs in conjunction with the Air Force Defense Command have measured and determined

the collisional cross sections and collisional probabilities. These data in turn show that the ISS

will be "hit" with a certain flux (Figure G. 15) and frequency over its lifetime. Some of the

collisions with micron-sized particles can necessarily result in the degradation of unshielded ISS

components and equipment (e.g., solar arrays). Typical impact velocities are 8-14 km/sec for

debris and as much as 19 km/sec for micrometeoroids. Risk mitigation is debris shields or

"bumpers" placed in the ram direction for debris and in the zenith direction for micrometeoroids.

Calculation of such shielding is supported by the JSC orbital debris program (with website @ sn-

callisto) and the JSC H1TF, with website @ hitf. Because pressurized vessel penetration is a

potential consequence, crew safety can be jeopardized by a rupturing vessel. Any pressurized

"tank" intended for the ISS must therefore pass adequate safety reviews, and actually becomes a

"tank system" with the tank enclosed in a debris shield box, which prevents vessel rupture. An
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example would be the gaseous tank supply system required for the baseline ACCESS TRD

instrument.
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Figure G.15. Meteoroid and orbital debris flux.

Relevant documentation is: SSP 30425, Sec. 8; Ref. 43.

Relevant websites include: Orbital Debris Lab and Hypervelocity Impact Facility.

Electromagnetic interference

The STS and ISS electromagnetic environments are particularly relevant for science payload

function and operation. It is important that instrumentation and avionics systems function without

degradation due to interference from other payloads and spacecraft activity, in the presence of a

radio-frequency background emitted by the Earth. One obvious source of such environmental

conflict is the potential for EMI or noise generated by other payloads or neighboring equipment.

Examples of EMI would include inadvertent radiation or emissions from electrical power systems,

switching devices, motors, and avionics circuitry. Other examples are transmitters and receivers,

cabling geometry, wiring configuration, grounding schemes, and bonding methods. Consequences

of EMI include fundamental noise and interference, ground loops, cross-talk in cabling, sporadic

behavior and equipment upsets, static charge buildup, and sporadic sources of electromagnetic

radiation. Risk mitigation includes EMI safety review, emission and susceptibility limits with

margins, wiring and cabling separation, electromagnetic shielding, EMI testing, adequate

grounding, electromagnetic isolation, and appropriate bonding methods. EMC and the EMI

control plan are the subject of SSP57010, Appendix G. A general discussion of natural EMI

sources is given in SSP 30425B, Figure 7.1.
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Relevant documentation is: SSP 57010G, SSP 30237, SSP 30242, MIL-STD-461, SSP

30243, SSP 30238, MIL-STD-1576, SSP 30240, and SSP 30245.

Contamination

Degradation of ISS payload performance through contamination of external surfaces is

another environmental concern. This is usually defined as molecular or particulate deposits

which, in combination with solar ultraviolet radiation, atomic oxygen, and the ambient plasma,

can alter the optical, thermal, and surface properties of payload surfaces. Floating contamination

could obstruct the FOV, degrade visibility, and possibly compromise certain science payload

objectives. Surface contamination includes any molecular or particulate releases from the STS

and ISS during operations. An example was urea from flight crew urine dumps during proximity

operations for Long-Duration Exposure Facility retrieval, discovered to be coating the entire

payload during postflight analysis. Other potential contamination sources include outgassing.

Some consequences are change in thermal control performance, degradation of solar array

efficiency, obstruction of FOV, and instrument clogging. Risk mitigation includes prelaunch

contamination control, appropriate prox ops procedures regarding plume impingement, venting,

and dumps, and safety reviews.

Relevant documentation is: SSP 30426, ASTM-E595-84, JSC SC-C-0005C, NSTS 07700-

Vol. XIV, Appendix 1, MCR-86-2004.

Acoustics, Stress, and Vibration

The subject of acoustical interference, stress, and vibration is pertinent to all STS and ISS

mission phases in both the ground and space segments. Audible noise from operating equipment

and instrumentation is an issue of crew and personnel safety. Acoustical noise transmitted by

phonon propagation, resonance, and structural vibration can result in degradation of payload

performance, falling into the categories of EMI discussed above. Stress and vibration are the

subject of rigorous safety review and were the basis of the ACCESS carrier analysis described in

the body of this report. All can result in mission failure. Risk mitigation is a thorough safety

review process.

Relevant documentation is: SSP 50005, MIL-STD-5G, NSTS-14046, JSC 73642, NSTS-

1700.7B, SSP 50021.
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Appendix H. Interface Hardware, Kits, and

Incompatibilities

The hardware per se will be discussed in section H. 1, while functional incompatibilities

which impact power and data interfaces are presented in section H.2.

H.1 Hardware per se

The following Table is a preliminary assessment of ISS interface hardware that may be required

for the ACCESS payload. All of the hardware should be provided government-furnished equip-

ment (GFE) to the payload at no cost. All deliverables are compatible with the 36-month schedule

template for launch.

NASA-ISS Interface Deliver HDWR Deliver
Provided Definition for prelim Flight
Hardware Provided IVTs (if req'd) Hardware

PAS/UMA "Kit" L-42 L-24 L- 18

Grapple Fixtures L-36 L-20 L- 14

ROEU L-34 L-18 L-13

Video Cameras, Targets L-24 L- 16 L- 12

EVA Handrails, Tether Attach L-24 L- 14 L- 11

PFR Attach Points L-24 L- 14 L- 11

Prototypes, qualification units, or special test equipment required for mechanical fit-checks

and electrical or data IVTs should also be provided when required. This Table must be revised

as the ISS and PAS interface requirements are defined.

Passive PAS/UMA "kit"

NASA-ISS will probably provide all flight hardware components for attached payloads in a

standard adaptable "kit" that would include the passive half of the PAS and UMA. This would

also include the EVA unloadable or removable capture bar mechanism that is now required for

all payloads since NASA-ISS eliminated the redundant motors on the PAS capture latch assembly.

ff a standard passive PAS/UMA kit were provided, it might also eliminate the need for a ground

adjustable capture bar that would allow the proper preload to be imposed by the PAS capture

latch. All the other components listed above should be provided in the attached payload "kit."

Grapple fixtures

When the Accommodation Study Team proposed the ACCESS USS option 7 in 1996, the

original scenario was to remove it from the payload bay with the Shuttle RMS (SRMS), pass it

off to the Space Station RMS (SSRMS), and install it on the $3 upper inboard PAS site without

translating the mobile transporter (MT). If there were no problems, this would take a few hours

and ACCESS would not need keep-alive power. Originally, this was to be accomplished using at
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leasttworelativelyinexpensive,unpoweredFRGFssuppliedbytheISSProgram.In otherwords,
thiswasamechanicalinterfaceonly.

However,sincethePASweightandCG envelopeshavebeenconsiderablyreduced,a
retractablekeeltrunnionassemblymechanism(s)will probablyberequiredon theUSSoption
with EVA contingencyoperation. Otherwise,ACCESSmustgo with theECS.

Therefore,anACCESS-with-USSoptionwould requireat leastoneEFGFto operateand
controltheretractablekeelmechanismfrom the SRMSafterthepayloadis unberthedfrom the
Shuttle.Oncethekeelis movedto exposethepassivePAS,aFRGFis still neededfor theSSRMS
to grabandinstallACCESS/USSonthePAS. If this operationwereto takeseveralhoursor
evendaysdueto equipmentor logisticalproblems,ACCESS(ECSor USS)wouldneedto be
handedbackto theSRMSto getkeep-alivepower(viaanEFGF)or getpowerfrom the SSRMS
(viaa poweranddatagrapplefixture, or PDGF).

This wouldmeanreplacingtherelativelycheapFRGFwith anexpensive(---$700K)PDGF
becausetheEFGFis notcurrentlycompatiblewith theSSRMS. ThePDGFis anISSorbital
replacementunit (ORU)thatcouldberemovedfrom theECSor USSvia EVA andrecycled
while ACCESSis on theISSif necessary.

If ACCESSwereto needto bemovedon theMT at somepoint, a thirdgrapplefixture
(FRGFor PDGF?)maybeneededsomewhereelseon theECSor USS.

Remotely operated electrical umbilical

NASA/ISS may consider performing a post-launch functional test of the ACCESS experi-

ment prior to unberthing from the payload bay of the Shuttle. This way, problems that may lead

to a return-to-Earth decision can be detected prior to installation on the ISS truss. Also, if the

rendezvous and docking with the ISS takes longer than expected, or problems with other payloads

and logistics carriers delay ACCESS installation on the PAS, ACCESS may require keep-alive

power in the payload bay of the Shuttle to stabilize the temperature of its TRD gas system.

For any of these scenarios, NASA-ISS should provide one complete ROEU payload half,

compatible with the Space Shuttle half. Depending upon the ACCESS payload interface design

(Appendix H.2 below), an assembly power conversion unit (APCU) may also be required.

Video cameras or targets

NASA-ISS must provide any video cameras or targets if required for berthing the ACCESS

payload on the active half of the PAS. ACCESS would integrate the targets.

EVA handrails and tether attach points

NASA-ISS should provide any EVA handrails and tether attach points needed to allow

passage around areas that will be blocked by the ECS or USS on the $3 truss segment PAS due

to new EVA translation envelope requirements. These may also be required because the reduced

PAS weight and CG envelopes will cause the payload to be located lower on the truss, thus

causing an EVA translation corridor path blockage.
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Portable foot restraint attach points

NASA-ISS should provide any PFR attach points required on the ECS or USS to provide

coverage for areas of the $3 Truss Segment that may be blocked by the ECS or USS. This is to

maintain the capability to service ISS ORUs in the area.

Schedule

The Table is a preliminary estimate in L-months of the lead time needed to incorporate the

design, manufacturing, and installation of each of the hardware components into the ACCESS

payload.

Interface definition requirements (specifically IRD SSP 57003 and CR 1135 32 which

modifies it) for the PAS and UMA, whether they are in a "kit" or not, will have the greatest

impact on the overall payload configuration. It is these requirements that will define the position

and orientation of the payload on the PAS as well as in the Space Shuttle. There is a reasonable

chance that the completely new carrier structure will be required in order to comply with CR

1135. This is why the interface definition needs to be provided as early as possible. Other

components, like video cameras, EVA handrails, and PFR attach points, will have less impact

and can be incorporated into the design later.

Presently, 11 months lead time is required from submittal of a planning purchase request to

delivery of an FRGF. For an EFGF, 14 months lead time is needed and 20 months is needed for

a PDGF and its cable harness. Since the flight hardware must be ready for installation at L-14

months, these need to be ordered at L-25 to L-34 months.

H.2 STS functional incompatibilities

As mentioned under "ACCESS Accommodation on STS" in the main text of this report,

there are three distinguishing features about STS accommodations, summarized in Table H.2-1.

Table H.2-1. STS-ISS Accommodation Incompatibilities

• STS power is 28 VDC while ISS PAS power is 120 VDC.

• STS high-rate data travels via copper wire while the ISS usesfiber optics.

• STS low-rate data and command is via the payload signal processor (PSP) and

payload data interleaver (PDI), while the ISS uses 1553 data bus.

Figure H.2-1 functionally illustrates the STS power and data accommodation interface.

The ROEU provides the physical connection between the Shuttle cabin and its payload bay for

transferring power (28 VDC) and data (low-rate 1553 data bus and high-rate copper wire). From

Table H.2-1, additional hardware may be required, depending upon the functional STS require-

ments to support the ISS ACCESS payload and the design of ACCESS itself. Table H.2-2

summarizes the STS accommodation situation.
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STS accommodation interfaces.

Table H.2-2. Examples of STS Accommodation Requirements

Requirement

• Provide power at 28 VDC.

• Provide power at 120 VDC.
• Provide low-rate data via S-band.

• Provide high-rate data via Ku-band

• Provide all of the above.

Outfitting
• ROEU

• ROEU and APCU

• ROEU and OIU

• DCU and ROEU

• DCU, ROEU, APCU, OIU

Only the ROEU in Table H.2-2 is GFE. The others are costs incurred by the payload.

If the STS payload bay accommodation requirement is only power in order to activate the

ACCESS heaters in its thermal control system for stabilizing the TRD gas system (Appendix

B.3, Figure B.3-5), only an ROEU is required. From Figure H.2-1, the APCU, DCU, and OIU

are not necessary if the payload heater system for the thermal control can function using the STS

28 VDC power available in the ROEU interface.

If the ACCESS payload is designed to operate on both 28 VDC and 120 VDC power

(Figure 27 in the main text), the APCU in Figure H.2-1 and Table H.2-2 is unnecessary. A

redundant heater system or internal power conversion (28 VDC ¢:, 120 VDC) in Figure 27 can

accomplish this.

If no live science data downlink functional test is required before unberthing the ACCESS

payload from the Shuttle bay, and the previous paragraph above is complied with, then only the

ROEU in Figure H.2-1 is required for STS power accommodations.
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H.3. Functional PAS and UMA interfaces

JfT_)

IMCA 1 HTR POWER. 202U L

J(rBD)

IMCA 1 POWER. 20-3U L_

J(TBD)
1553 DATA -A, 2P-BSJ I-

ADDRESS. 22 (1_) /
J{TBD)

1553 DATA - B. 22-BSJ [-
IMCA 1 RTO. 22_2U __

J(TBE

IMCA 1 HTR POWER, 20-2U L_

J(TEO:
IMCA I POWER, 20-3U I--

HIGH RATE DATA LINK. FO (2) /

,IOBD:

1553 DATA-A, 22-BSJ l
,a,DDP, ESS, 22(12) I--

wrBo)

)

P(TBD)

J(TBD

POWER A, 8 (3) LPASSTHRU

J(TBD

PASSTHt_U POWER B. 8 (3) L

J(T_'

15_ DATA-B. _BSJ I-
IM_ I RTD, 22-2LJ L

(TBD)

P(TBD) WrTBO_

pff SO1 w(rl_)

P(TBD) Wo'Br"

I_BD) WffS[

A2

CAPTURE LATCH

wrmo_

P(T=) J(TBO) J{T BD_..._ BOw}tTBOI _'_ I

IMOA 1

W(TB_) P(TBD_{"_"I A1 1 _

ii

" u.,

IMCA 1

P(TBD) f 3J(TEO ) A1

_(TeO)

_ HRDL, FO
DATA A & B
PASSTH_U POWER

i GUI_E

VANE 1

I VANE 2

GI.JIDE

VANE 3

• P(TBD_
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Appendix I. PCU Tank System, Details
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Figure I-2.
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Appendix J. Acronyms, Symbols, and Definitions

Acronym Meaning

ACCESS

AC
ACE

ACLB

A/D

ADC

AE8MAX(MIN)
AGU
A1

AMS

AP

AP8MAX(MIN)
APCU

APCU

APFR

APL
APLSS

APM

APS

Ar
As

ASIC

Assy, ASSY
ATC

ATP

ATIC
Avionics

Avionics

B
Be

BGO

B/L
BLKT

BOL

Br

C
CAL

Caltech
CAM

cap
C&C MDM

C&D
C&DH

CCF

CCSDS
CDR

CETA

CEU
Cert

Advanced Cosmic-Ray Composition Experiment for Space Station

Assembly Completc

advanccd composition explorer
ASIC control logic board

analog-to-digital

analog-to-digital converter

trapped electron flux computer code
American Geophysical Union
aluminum

alpha magnetic spectrometer
attached payload

trapped proton flux computer code

assembly power converter unit (ISS)
auxiliary power conversion unit (Shuttle)

Avionics Planning Flight Review

approved parts list

attached payload support structure
attached pressurized module

automated payload switch

argon
arsenic

application-specific integrated circuit

assembly

aerogel threshold counter
Acceptance Test Plan
advanced thin ionization calorimeter

av__jiationelectronics

aerospace electronics
boron

beryllium
bismuth germanate (BinGe3012 - chemical formula)
baseline

blanket

beginning of life
bromine
carbon

calorimeter

California Institute of Technology

centrifuge accommodations module

capacitor
command and control MDM
command and data

command and data handling
consolidated communications facilities

Consultative Committee for Space Data Systems

comprehensive design review
crew and equipment translation aid
control electronics unit

certification
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c.f.
CG
CIR
CITE
CLA
cm

cm"2

CMD
CMG

CMOS

CNO
CONTAM

COR

COTS

CPDS
CPU

CR

CREME
CRF

CRN

CRV
Cs

CSR

DC
DC

DC&I

DCU

DDCU
DDR

DDT&C

DDT&E
DESY

DIM
DNY

DSM

E

E-net

ECLSS
ECS

EDAC
EDO

EEE

EF
EFGF

E.g., e.g.
EGSE

ELM
EMC

EMCS

EMI
EMICP

EMU

ENG
EOL

confer, compare

center of gravity
cargo integration review

cargo integration test equipment

capture latch assembly
centimeter

2
cm

command

control moment gyro

complementary metal oxide semiconductor

carbon, nitrogen, oxygen element group
contamination

communications outage recorder
commercial-off-the-shelf

charged particle differential spectrometer
central processing unit

change request

Cosmic Ray Effects on Micro-Electronics (computer code)
Canister Rotation Facility

cosmic-ray nuclei (Experiment, Spacelab-2)
crew return (rescue) vehicle
cesium

customer support room
direct current (power)

docking compartment

design, certification, & integration
data conversion unit

DC-to-DC converter unit

digital data recorder

design, development, test, and certification
design, development, test, and evaluation

Deutsche Electonishen Synchrotron
digital interface module

Downey

docking and stowage module

energy
Ethernet

environmental control and life support system
experiment carrier structure
error detection and correction

extended-duration orbiter

electrical, electronic, and electromechanical

Exposure Facility

electrical flight releasable grapple fixture
for example

electrical ground support equipment

experiment logistics module
electromagnetic compatibility

enhanced mission communications system
electromagnetic interference

EMI control plan

extravehicular mobility unit
engineering
end of life
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ERA
ESA
ESTL
etc.
ETE
EUV
EVA
EVAL
EWB
EXP
F
Fab
FAR
FAR
FAWG
FDRD
Fe
FEM
FEM
FEMA
FGB
FIP
Fit,FLT
FLUKA
FOR
FORTRAN
FOV
FPSR
FRGF
FRR
FSE
FUNCT
g
G
GC
GEANT
GFE
GHE
GN&C
GOAL
GOWG
GPC
GPS
GRAM
GRND
GSE
GSFC
H
Hab
HCOR
He
HEAO
HEXTE
HITF
HMP

Europeanroboticarm
EuropeanSpaceAgency
ElectronicSystemsTestLaboratory
etcetera
end-to-end
extremeultraviolet
extravehicularactivity
evaluation
environmentalworkbench
experiment
fluorine
fabrication
flightacceptancereview
FederalAcquisitionRegister
FlightAssignmentWorkingGroup
FlightDefinitionRequirementsDocument
iron
finiteelementmodel
front-endmodule
failuremodesandeffectsanalysis
functionalcargoblock(Russiancontrolmodule,Zarya)
firstionizationpotential
flight
FluctuatingCascade(German)computercode
flightoperationsreview
formulatranslator
fieldof view
flightplanningandstowagereview
flightreleasablegrapplefixture
flightreadinessreview
flightsupportequipment
functional
gram
giga-
generallyclean
Giant(French),simulationcomputercode
government-furnishedequipment
groundhandlingequipment
guidance,navigation,andcontrol
galacticoriginandaccelerationlimit
GroundOperationsWorkingGroup
generalpurposecomputer(Shuttle)
globalpositioningsatellite
globalreferenceatmospheremodel(MSFC)
ground
groundsupportequipment
GoddardSpaceFlightCenter
hydrogen
habitation
operationalversionofCOR
helium
High-EnergyAstrophysicsObservatory
high-energyX-raytelescopeexperiment
HypervelocityImpactFacility
hazardmitigationplan
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HODO
HORIZ
HOSC
HQ
HSKP
HST
HTR
HV
HVI
I
ICD
ICRC
ID
IDD
IEEE
I/F

IF

IGRF
IMCA

In

INST'LN
INTG

IR

IRD
IRI

ISPR

ISS

ITA
ITA-S

ITA-P

IVT
IV&T

JACEE

JAM
JCP

JEM

JEM
JGR

JIS

JSC

kbps
KSC

KuSP

L-34

L-months
ib

LBNL

LDEF
LED

LEO

LEPS
LET

LM, L-M
LMES

LPIS

hodoscope
horizontal

Huntsville Operations Support Center

Headquarters

housekeeping
Hubble Space Telescope
heater

high voltage
hypervelocity impact
inboard
Interface Control Document

International Cosmic Ray Conference
identification

Interface Definition Document

Institute for Electrical and Electronic Engineers
interface

interaction factor

international geomagnetic reference field

integrated motor control assembly
indium

installation

integration
infrared

Interface Requirements Document

international reference ionosphere
international standard payload rack

International Space Station

integrated truss assembly
ITA-starboard

ITA-port
interface verification test

integration, verification, and test

Japanese-American cooperative emulsion experiment

joint airlock module

Japanese Control Program
Japanese equipment module

Japanese experiment module

Journal of Geophysical Research
joint integrated simulation

Johnson Space Center

kilobits per second
Kennedy Space Center

Ku-band signal processor
launch minus 34 months (or weeks)

time prior to launch, in months

pound, pounds

Lawrence Berkley National Laboratory

Long-Duration Exposure Facility
light-emitting diode
low Earth orbit

low-energy particle shield
linear energy transfer (Ref. 39, MeV-cmE/mg)
Lockheed Martin

Lockheed Martin Engineering and Sciences

launch processing integration stand
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LRR
LSFR
LSM
LSP
LSRR
M
m
MAG
MAPMT
MARIE
Mbps
MBS
MCC
MCC
MDF
MDM
MECH
MECHINT& PROC
MET
Mfg,MFG
mg
Mg
Mil
MIL-STD
Mip
MIP
Mips
Mission-00
MLI
mm
MMC
MMO
MMOD
MMPF
MMPTD
MPLM
MPPF
MRS
MSB
MSC
MSFC
MSIS
MSU
mV
MT
MTBF
MTG,Mtg
Mux
MWPC
n

NASA
NASDA
NASTRAN
NATO
Ne

launchreadinessreview
launchsitefinalreview
lifesupportmodule
launchsiteprocessing
launchsitereadinessreview
mcga-
meter
magnet
multi-anodePMT
Martianradiation environment experiment

megabits per second
MRS base system
Mission Control Center

master control computer

minimum duration flight

multiplexer-demultiplexer
mechanical

mechanical integration and processing

Marshall Engineering thermosphere model
manufacturer

milligram
magnesium
10 3 inch

Military Standard
minimum ionizing particle

mission integration plan

Mip in silicon
Shuttle/ISS mission, TBD

multilayer insulation
millimeter

(APM) mission management computcr

Mission Management Office
micrometeoroid and orbital debris

Microgravity and Materials Processing Facility

Manufacturing Materials and Processing Technical Division

multipurpose logistics module
Multi-Payload Processing Facility
mobile remote servicer

multi-sideband

mobile servicing center

Marshall Space Flight Center

mass spectrometer incoherent scatter model
mass storage unit
millivolt

mobile transporter
mean-time between failures

meeting

multiplexer

multi-wire proportional counter/chamber
index of refraction

National Aeronautics and Space Administration

National Space Development Agency of Japan
NASA structural analysis computer program (cf. FORTRAN)

North Atlantic Treaty Organization
neon
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Ni
NISN
NRA
NSSDC
NSTS
NTA
NTA
¢

¢ II
O

02

Off-line

OIU
On-line

OPF

OPS, Ops
OR

ORU

OSE

OTD
OV

P
P3

P/L

PAH
PAIT

parsec
PAS
Pb

PC

PCS

PCU

PCU
PDGF

PDI

PDLU
PDM

PDR

PDSS
PETS

PFR

PGSC

Phase

PIA

PIP

PL
PLBD

PLCU

PYLD
PM

PMA

PMT

PNP

POCC

nickel

NASA Information Services Network

NASA Research Announcement

National Space Science Data Center

National Space Transportation System
network test adapter

nitrogen tank assembly

Phase (see Phase below)

Phase "Two" safety review

oxygen (atomic)
oxygen (molecular)

payload at KSC but not turned over to NASA
Orbiter interface unit

payload at KSC and turned over to NASA

Orbiter Processing Facility

operations (flight crew in conjunction with flight controllers)

logic summing gate (electronics)
orbital replacement unit

orbital support equipment
ORU transfer device

Orbiter vehicle

proton

port 3
payload

Payload Accommodations Handbook

Payload Accommodations Integration Team
3.258 light years

payload attach system
lead

personal computer
portable computer system

plasma contactor unit
power conversion unit

power and data grapple fixture

payload data interleaver
payload data interleaver unit

payload data multiplexer

preliminary design review

Payload Data Services System

Payload Environmental Transfer System
portable foot restraint

payload general support computer

designated by "_" (safety-review phase designation)

Program Initiation Agreement
payload integration plan

payload

payload bay doors
payload control unit

payload

propulsion module

pressurized mating adapter
photo-multiplier tube

probability of no penetration

Payload Operations Control Center
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POIC
PPL
PR
PREP(s)
PRIM
PROGMGR
PROM
ProxOps
PSP
PSV
Pt
PUP
PV
PVLR
Pwr
Q1
Qual
R&D
RACU

Rad-hard

RAM

Rb

req'd
RI

RM
RMS

ROEU

RSA

RY

S

S

$3

SAA
SAAMD

Sc
Scar

SCHED

SEE
SEE

SEU

SFWR
Si

Sim

SLF
SLP

SM

S/MM-09

SN
SNR

SOl

SPDM
SPIE

SPP

Sr
SRAG

Payload Operations Integration Center

preferred parts list

purchase request
preparation(s)

primary

program manager
programmable read-only memory

proximity operations (on-orbit)

payload signal processor

pressure safety valve
platinum

partner utilization plan

photovoltaic

pre-VLR

power
first quarter, etc.

quali fication
research and development
Russian-American converter unit

radiation hardened

random access memory
rubidium

required
Rockwell International

research module

remote manipulator subsystem
remotely operable electrical umbilical

Russian Space Agency

real-year (dollars)
second

sulfur

starboard 3 (etc.)
South Atlantic Anomaly
stand-alone acceleration measurement device

scandium

placeholder interface
schedule

stand end effector

single event effects

single-event upset
software
silicon

simulation

Shuttle Landing Facility

Spacelab pallet
service module (Russian)
Shuttle-Mir mission No. 9

supernova

supernova remnant
silicon-on-sapphire insulator

special purpose dexterous manipulator
The International Society for Optical Engineering

science power platform
steradian

Space Radiation Analysis Group
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SRMS
SS
SSE
SSP
SSPF
SSRMS
STA
STE
STS
STS-00
STS-TBD
SWH
S-Wirc
T
TAP
TBD
TCP/IP
TCP/IP
TCS
TDRS
TeV
Th
TIGER
TIM
TM
TM
TMA
TOF
TPEC
TRACER
TRD
TRIG
TRR
Turnkey
T/V
U
U
UCC
UCCAS
UDM
UF
UH
UI
ULC
ULCAS
UMA
UO
UOF
URL
U.S.
USOC
USOS
USS
UV
V

Shuttleremotemanipulatorsubsystem
SpaceStation
SpaceScienceEnterprisc
SpaceStationProgram
SpaceStationProcessingFacility
SpaceStationremotemanipulatorsubsystem
structuraltestarticle
specialtestequipment
spacetransportationsystem(SpaceShuttle)
STSflight,TBD
STSflight,TBD
SparesWarehouse
safetywire
tera-
trussattachedpayloads
to-be-determined
transfercommandprotocol/Internetprotocol
transmissioncommandprotocol/Internetprotocol
thermalcontrolsystem
trackingdatarelaysatellite
tera-electron-volt
thorium
trans-irongalacticelementrecorder
technicalinterchangemeeting
telemetry
task/technicalmanager
TechnicalManagementArea
time-of-flight
tissue-equivalentproportionalcounter
transitionradiationarrayforcompositionofenergeticradiation
transitionradiationdetector
trigger
testreadinessreview
utilizationofexistingJSCDC&Imethodology,personnel,& templates
testandverification
uranium
upper
unpressurizedcargocarrier
UCCattachsystem
universaldockingmodule
utilization(utility)flight
ultra-heavy
upperinboard
unpressurizedlogisticscarrier
ULCattachsystem
umbilicalmechanismassembly
upperoutboard
UserOperationsFacility
uniformresourcelocator
UnitedStatesofAmerica

United States Operations Center
United States on-orbit segment

unique support structure
ultraviolet

vanadium
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V
VAB
VAR
VDC
VES
VIB
VLA
VLR
VLSI
W
WBS
WETF
WG
WSC
Wt
WBSAAMD
WYE
Xe
Z
Z1
ZIM
Zn
&
I-G

volt
VehicleAssemblyBuilding
verificationanalysisreview
voltsdirectcurrent
vacuumexhaustsystem
vibration
verificationloadsanalysis
verificationloadsreview
verylarge-scaleintegration
watts
workbreakdownstructure
WeightlessEnvironmentTrainingFacility
workinggroup
WhiteSandsComplex
weight
wide-bandstand-aloneaccelerationmeasurementdevice
work-yearequivalent
xenon

electric charge of the nucleus (atomic number)
Zenith 1

"Z" (charge) identification module
zinc

and (ampersand)

one Earth-gravity (9.80665 m s-2)
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Appendix K. Websites and Internet Access

Various A CCESS-related websites:

OGoddard

O Johnson Space Center
41,Office of Space Science, Headquarters

•University of Maryland

_l,University of Chicago
4,Louisiana State University

41,Washington University, St. Louis

http://www701 .gsfc.nasa.gov/access/access.htm

http://cass.j sc.nasa.gov

http://www.hq.nasa.gov/office/oss/
http://www.atic.umd.edu/access.html

http://hep.uchicago.edu/-swordy/access.html

http://phacts.phys.lsu.edu/access
http://cosray2.wustl.edu/access

Various Space Station-related websites:

4l,Program Automated Library System
4SSP Released documents

4,ISS Program Team

•Image of ISS
_l,Boeing, Radiation Effects Lab
_I,GSFC Preferred Parts List

_l,Orbital Debris Lab

_l,Hypervelocity Impact Facility

41,ISS Assembly Sequence

http://iss-www.j sc.nasa.gov/cgi-bin/dsql+/ORAP?-h+pl_search

http:lliss-www.jsc.nasa.govlsslissapt/payofc/documents/ozdocs.html
http://iss- www.j sc.nasa.gov/ss/issapt/

http://station.nasa.gov/gallery/animstills/fin22.jpg

http://www.boeing.com/assocproducts/radiationlab/data.htm
http://misspiggy.gsfc.nasa.gov

http://sn-callisto.j sc.nasa.gov/model/ordem96.html

http://hitf.jsc.nasa.gov/hitfpub/main/index.html

http://iss-www.j sc.nasa.gov/ss/issapt/mio/mioissably.htm

Office of Space Science (OSS) websites:

_I,OSS images

OSpace Science Enterprise (SSE)
http://www.hq.nasa.gov/o ffice/oss/images.html

http://www.hq.nasa.govlofficelosslstrategy/1997 /sseplanm.htm
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